Therapeutic gene editing: delivery and regulatory perspectives


Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues.


Gene-editing technology has recently emerged as a new treatment modality for a variety of diseases, including hereditary, infectious, and neoplastic diseases. The remarkable progress in nuclease engineering has enabled accurate modification of the eukaryotic genome for therapeutic purposes1,2. Gene-editing nucleases are restriction enzymes with engineered DNA-binding domains that produce double-stranded breaks (DSBs). The three major types of gene-editing nucleases, listed in order of their development, are zinc finger nuclease (ZFN)3, transcription activator-like effector nuclease (TALEN)4, and clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease Cas9 (CRISPR/Cas9)5. The application of CRISPR/Cas9 to genome editing, in particular, has had a tremendous effect on the rate at which genetically engineered materials for gene therapy have been developed, owing to the simplicity of the manufacturing process, as compared with earlier generations of engineered nucleases, including ZFN and TALEN6.

Gene-editing-based therapy has considerable merits compared with transient expression-modulating gene therapy1,2,5. For inducing gene expression, functional genes have been delivered to target cells or tissues that lack specific functions. For decreasing gene expression, short nucleic acid sequences have been introduced to silence or interfere with the disease-related gene. However, both strategies have limitations, such as an incomplete therapeutic effect, owing to transient gene silencing and mutagenesis caused by incorrect gene insertion. In contrast, therapeutics based on gene-editing technology can exert permanent and elaborate proofreading effects at the genome level and thus represent a key development in gene therapy.

There are currently dozens of clinical studies of gene-editing-based therapeutics, including in vivo and ex vivo editing therapies. For the successful translation of gene-editing-based therapeutics to the clinic, efficient and safe delivery systems are indispensable7. Various delivery systems7,8,9 and electroporation techniques10,11,12,13 have been studied to introduce gene-editing nucleases in the form of DNA14,15,16,17,18, mRNA19,20,21,22, or protein23,24,25,26,27,28. Viral vectors used for ex vivo and in vivo delivery of nuclease-encoding genes include adeno-associated virus29,30,31,32,33, adenovirus34,35,36,37, and lentivirus38,39,40,41,42. Additionally, non-viral delivery systems, lipid-based nanoparticles24,25,43,44,45,46,47,48, polymeric nanoparticles49,50,51,52, and cell-penetrating peptides26,27 have been investigated.

Currently, there are several guidelines for gene-based therapeutics and cell therapies. These guidelines cover quality control53,54,55,56, safety56,57,58,59, and efficacy54,59,60,61 issues of gene-based therapeutics and may provide a basis for regulatory considerations regarding the evaluation of gene-editing therapeutics. Despite the rapid progress and clinical significance of gene-editing technology, explicit regulatory guidelines focusing on the preclinical and clinical evaluation of gene-editing therapeutics are not yet available. In this review, we address the strategies for delivering gene-editing-based therapeutics and consider the regulatory aspects of nuclease delivery systems.

Gene-editing nucleases

Gene-editing nucleases (Figure 1) are composed of a target-sequence-recognizing domain (guide RNA, in the CRISPR/Cas9 system) and a nuclease1. After the programmed nuclease cleaves the target gene, repair of DSBs proceeds through two different mechanisms: non-homologous end joining (NHEJ) and homology-dependent repair (HDR). NHEJ, which eliminates the target region by joining DSBs, can be utilized to silence or correct a pathogenic gene, whereas HDR can introduce a homologous sequence into DSBs, enabling donor DNA to be inserted to either correct an existing gene or add a new one. The properties of gene-editing nucleases and the differences among them are summarized in Table 1.

Figure 1

Gene-editing nucleases. Gene-editing nucleases include ZFN (A), TALEN (B), and CRISPR/Cas9 (C).

PowerPoint slide

Table 1 Properties of standard gene-editing nucleases.

ZFN (Figure 1A) contains a Cys2-His2 zinc finger and FokI nuclease as the DNA-binding and cleavage domains, respectively62. Because each zinc finger module (30 amino acids) recognizes a specific 3-base-pair DNA sequence, several zinc finger modules are typically engineered on the basis of the target sequence. After the binding of zinc finger modules to target DNA, the FokI restriction enzyme mediates DNA cleavage. In general, if more than three modules are engineered, symmetrical FokI dimerization is required for increased target specificity and cleavage efficiency. Although zinc fingers have demonstrated their potential as genetic 'scissors' in mammalian cells, the strategy is limited because the selected target region must meet the requirement of a 5′-GNNGNNGNN-3′ motif. Engineering a zinc finger module for each target gene is also expensive and time consuming.

TALEN (Figure 1B), like ZFN, also utilizes FokI nuclease as a cleavage domain4. The DNA-binding domain, TALE, which originates from the plant pathogen Xanthomonas campestris, contains 34–35 amino acids per module, two of which, termed repeat-variable di-residues, determine the specific DNA base pair recognized. The recognition of a single DNA base pair by one TALE module is beneficial in terms of selecting the target regions; however, the complicated engineering procedures required for the recognition of a wider range of target gene sequences have been a matter of concern. To solve the problem, researchers have developed a TALEN plasmid library that recognizes 14–18 base pairs and can target 18 742 human genes63.

The CRISPR/Cas9 system (Figure 1C) is based on a prokaryotic antiviral mechanism in which bacteria insert a partial gene sequence from an infection source, such as a bacteriophage, into their own genomes to defend against repeat infection64. Specifically, CRISPR/Cas9 uses a guide RNA to bind a complementary sequence in a target gene, after which Cas9 recognizes and cuts the target DNA. The CRISPR/Cas9-based system has revolutionized gene editing, and the DNA-binding function of short guide RNA offers the potential for the rapid development of gene-editing-based therapeutics as simplefacile designs of singleguide RNA (sgRNA) design tools and multiplexing ability (several target DNAs in the same cells) become available65.

In vivo and ex vivo gene editing

Therapeutic gene editing can be administered through two basic strategies: (1) direct in vivo delivery of a gene-editing nuclease and (2) delivery of cells engineered ex vivo to contain a gene-editing nuclease (Figure 2)1. Appropriate delivery systems for in vivo gene editing include viral vectors and cationic lipid- or polymer-based non-viral vectors, because the cargo for gene editing usually involves a plasmid vector or mRNA encoding the gene-editing nuclease. Occasionally, naked plasmids have been locally injected into particular tissues, such as eye and muscle. Because systemic injection of gene-editing nucleases can drive gene modifications in multiple tissues, depending on the delivery strategy, the benefits of gene editing can be more readily extended to various diseases, as compared with ex vivo gene editing. Similarly, the tissue-wide distribution associated with in vivo delivery raises the issue of tailoring the biodistribution and pharmacokinetic profiles of gene-editing delivery carriers to minimize side effects in off-target tissue. Ex vivo gene editing requires a somewhat complicated procedure for ex vivo genetic modifications before transplantation. Removal of target cells from the patient is the first step in using an ex vivo strategy to deliver gene-editing nucleases. Viral vectors have been favored for the delivery of gene-editing systems to hard-to-transfect cells, such as immune cells and stem cells. Moreover, stimulus-based strategies, such as electroporation and magnetofection, are possible for ex vivo gene editing, because the selection of a delivery vector for this type of gene editing is not affected by the behavior of the vector in vivo (Table 2).

Figure 2

Therapeutic gene-editing strategies. A schematic depiction of in vivo and ex vivo gene editing is shown. For in vivo gene editing, viral or non-viral vectors carrying nucleases are directly injected into the body. For ex vivo gene editing, the target cells are isolated and gene-edited with viral or non-viral vectors carrying nucleases, after which gene-edited cells are expanded and reinfused into the body.

PowerPoint slide

Table 2 In vitro and in vivo gene-editing studies in non-clinical development.

Current strategies for the delivery of gene-editing therapeutics

Gene-editing-based therapy has been actively studied for investigational and non-clinical development (Figure 3). The majority of these studies have been conducted in the United States (54.4%), and the next highest percentage of studies (19.1%) have been conducted in China (Figure 3A). Viral infection (33%), blood disease (19%), and neoplasms (13%) have been the major disease targets of therapeutic gene editing (Figure 2). Although CRISPR/Cas9-mediated gene editing is the most recently developed gene-editing tool, it has been the most widely investigated both in vitro and in vivo, owing to its convenience and accessibility (Figure 3D).

Figure 3

Current status of gene-editing studies in non-clinical development. Therapeutic gene editing in non-clinical development, analyzed by country (A), target disease (B), editing type (C), and nuclease type (D).

PowerPoint slide

The delivery strategies for gene editing are divided into viral and non-viral vector systems (Figure 4). Unlike traditional gene therapy methods, non-viral vector-based studies have predominated (70%) over viral vector-based studies in investigations of gene-editing therapies (Figure 4A), because electroporation, a non-viral method, is the main approach utilized for ex vivo gene editing (39% of all reports). In the case of viral vectors, lentiviruses are most often used, followed by adenovirus-associated virus (AAV) and adenovirus, respectively (Figure 4B). After electroporation, which is by far the most important non-viral method for ex vivo gene delivery (56%), the next most common delivery methods are based on lipids (17%) and polymers (8%) (Figure 4C).

Figure 4

Delivery strategies for gene-editing studies in non-clinical development. Therapeutic gene editing in non-clinical development, analyzed based on delivery strategy (A), viral vector type (B), and non-viral type (C).

PowerPoint slide

Lentiviral vectors have the advantage of being able to integrate into dividing and non-dividing cells; they also have a relatively large capacity (8 kb), thus facilitating the delivery of large nuclease-coding sequences66. Lentiviral vectors have traditionally been used for the transfer of gene-editing components into hard-to-transfect cells, such as T cells38,39,67 and primary cells38,68,69, which are used to treat human immunodeficiency virus (HIV) infections and neuromuscular disease, among others. Compared with adenoviruses, AAVs are less pathogenic and non-immunogenic and are thus suitable for in vivo gene editing to exert influences throughout the body70. Indeed, most approaches that have used AAV delivery systems have been applied to investigate in vivo gene editing in animals.

Among the non-viral delivery systems, electroporation, a traditional gene-transfer method, is the most effective in delivering genetic materials and thus exhibits high transfection efficacy in hard-to-transfect cells7. However, this method has limitations for direct application in vivo, including cytotoxicity and immune-stimulating effects. Therefore, electroporation has been widely used for ex vivo gene editing of immune cells, stem cells, and primary cells10,14,19. Lipid- or polymer-based non-viral vectors, compared with viral delivery vectors, are relatively safer in vivo and can be modified in various ways for target-cell-specific delivery71. Because cationic liposomes or polymers usually load nucleic acid cargo via electrostatic interactions, they enable various types of gene-editing components, such as mRNAs and short RNAs, to function immediately in the cytoplasm after cellular entry.

Clinical trials of gene-editing-based therapeutics

Currently, 18 gene-editing-based therapeutics are undergoing clinical trials worldwide ( as depicted in Figure 5. ZFN-based approaches, with 11 trials (6 of which are organized by Sangamo Bioscience), represent the majority (61%) of these clinical studies. Among the trials using ZFNs, three are Phase I/II trials targeting the CCR5 (C–C motif chemokine receptor 5) gene for HIV infection. The remaining eight ZFN studies are Phase I trials varying in terms of target gene, disease, and delivery strategy. In the case of TALEN trials, three Phase I trials of multiplex gene editing targeting TCRa (T cell receptor a) and CD52 to improve the efficacy of chimeric antigen receptor (CAR)-modified T cells targeting CD19 (CD19-CAR-T; UCART19, licensed to Servier) are currently underway. The most recently developed CRISPR/Cas9 system has recently been used in clinical trials in China designed to knock out PDCD1(programmed cell death protein 1) as a treatment for multiple cancers.

Figure 5

Current status of therapeutic gene editing clinical trials. Clinical studies of therapeutic gene editing, analyzed by phase (A), country (B), delivery vector (C), editing strategy (D), nuclease type (E), and target gene (F).

PowerPoint slide

The gene-editing delivery strategies used in clinical trials can be classified into three categories: viral vectors (6 studies), electroporation (6 studies), and naked plasmids (1 study) (Table 3). The ex vivo gene-editing strategies targeting CCR5 to inhibit HIV entry use adenoviral vectors (4 studies) or the electroporation method (3 studies) for T cell transfection. Electroporation of TALEN mRNA (3 studies) has also been used for TCRa/CD52 knockout in the trials of CD19-CAR-T. Although information on vectors is not yet available for the four trials using ex vivo CRISPR/Cas9 gene editing, viral vectors or electroporation methods are presumably used on the basis of their efficient T cell transfection. In vivo administration of AAV vectors has also been used in hepatocyte-targeted gene-editing therapy for the treatment of hemophilia B and MPS I. A CCR5-knockout T cell line (SB-728-T), a leading therapeutic gene-editing candidate, has been constructed by adenoviral delivery of ZFN95. In a Phase I safety study (NCT00842634), 12 HIV-infected patients received a single infusion of 5×109–10×109 CCR5-knockout T cells. The blood concentration of SB-728-T was consistently maintained, exhibiting a mean half-life of 48 weeks (loss rate, 1.81 cells/d). In comparison, the loss rate of the unmodified T cells was 7.25 cells per day. In the preliminary stage of a Phase II trial, an adenoviral delivery strategy also induced additional CD8-mediated immune stimulation, thus suggesting an adjuvant-like effect of the adenovirus used for gene editing.

Table 3 Therapeutic gene editing in clinical trials.

Regulatory perspectives

With the growing number of studies investigating gene-editing-based therapeutics comes the need to address regulatory concerns that might affect clinical applications54,60,96. Although it is not possible to clearly outline all the potential regulatory concerns relevant to gene-editing-based therapeutics, the major issues include safety, efficacy, and quality control. In fact, the genetic materials for delivery of gene-editing nucleases are not markedly different from those for conventional ex vivo/in vivo gene therapies. Thus, quality control and efficacy evaluations of in vivo gene-editing therapeutics can be considered in the context of existing gene-therapy guidelines54,55,56,57,58,59,60,61,97. Similarly, existing gene/cell therapy guidelines can be applied to ex vivo gene-editing therapeutics. The existing guidelines relevant for gene-editing therapeutics issued by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) are summarized in Table 4. However, novel gene-editing mechanisms using exogenous nucleases raise significant new safety concerns.

Table 4 Relevant guidance documents for gene-editing therapeutics.

Gene-editing-based therapeutics introduce a new degree of complexity to delivery methods and delivery systems98. Depending on the mode of delivery, the risk levels and concerns can vary99. Overall, the risk is higher for direct in vivo delivery compared with ex vivo delivery of gene-edited cell therapeutics. The delivery system itself can also affect risk levels. The use of viral vectors, compared with proteins or mRNAs delivered through non-viral vectors or electroporation, may raise greater safety concerns. Because of the high risks associated with in vivo gene editing at the current stage of development, most gene-editing-based therapeutics currently in clinical trials use the ex vivo gene editing strategy. In this review, we will focus greater attention on the ex vivo delivery form of gene-editing therapeutics.


Safety is the most important issue from a regulatory perspective. The working mechanism of nuclease-mediated genome editing presents a double-edged sword: whereas it provides a therapeutic effect that is unprecedented in its power, it also bears major safety concerns100. Because gene-editing therapeutics act by creating DSBs in genomic DNA, the risks of off-target toxicity at unintended sites are higher than those associated with other gene therapeutics that do not induce chromosomal insertions or genome alterations. Moreover, unlike chemicals and antibody-based drugs, the genome-level action of gene-editing therapeutics evokes concerns about the selection of relevant animal models for safety studies. For in vivo gene-editing therapeutics, the binding specificity of the designed nucleases is governed by specific sequences in the genome. Because the mouse genome has substantial differences compared with the human genome, preclinical safety studies, especially for in vivo gene-editing therapeutics, should be conducted in humanized animal models that mimic the human genome.

Off-target genotoxicity

Although the engineered nucleases possess a targeting specificity for accurate gene editing, unintended interactions of the nucleases and the consequent cleavage of non-target sites nonetheless occur101. “Off-target” genotoxicity can be defined as toxic side effects caused by unintended gene cleavage at non-target sites. The CRISPR/Cas9 system has a relatively higher chance of generating such 'off-target' cleavages, because sgRNA can bind a mismatched sequence with a partial complementation. The off-target effect has been regarded as a major concern for clinical application of gene editing therapeutics. Because gene-editing technology, by nature, modifies the genome, the most important safety issue is the possibility of genotoxicity through the modification of non-target genes101. Alterations of the genome at non-target loci are classified primarily as large-scale translocations or deletions and small-scale insertions/deletion (indels). A variety of appropriate methods are available for studies designed to test the occurrence of large- and small-scale off-target genotoxicity. Functional studies of gene-edited cells would be suitable for initial off-target genotoxicity studies. These functional studies could include an examination of changes in the viability, proliferation, and cell-cycle behavior of gene-edited cells.

If no changes in the functional behavior of the gene-edited cells are observed, the next step would be to test for large- and small-scale off-target effects. Large-scale genomic changes include translocation, deletion, and inversion70. These large-scale genomic changes can be detected by using array comparative genomic hybridization techniques and genotyping in gene-edited cells used in ex vivo therapeutics or in biopsied cells from in vivo therapeutic applications.

If no evidence of large-scale gene modification is found, the next step would be to test small-scale indel frequencies at off-target loci. In silico surveys, whole-exome profiling, and whole-genome profiling can be used to test the occurrence of off-target indels in gene-edited therapeutics. Whole-exome profiling can reveal changes in the exons encoding all proteins and should be performed for any delivery form. Recently, whole-exome profiling has been used to test the off-target effects of CRISPR/Cas nucleases102. DNA fragments derived from viral vectors or plasmid DNA, compared with proteins or mRNA delivered using non-viral vectors or electroporation, may have higher risks of insertion into DSBs at off-target sites.

Thus, whole-genome profiling may be a necessary adjunct for applications in which nucleases are delivered by viral vectors or plasmid DNA. For genome-wide profiling, Guide-seq103 and Digenome-seq104 systems have been used to assess off-target cleavage by CRISPR/Cas nucleases. A T7 endonuclease 1 cleavage assay has also been used to verify small-scale off-target indels and mutations introduced by CRISPR/Cas nucleases105.

Gene-editing therapeutics use several pathways for editing genes, each with its own benefits. After the cleavage of genomic DNA by ZFN, TALEN or CRISPR/Cas9, the resulting DSBs are repaired by either NHEJ or HDR mechanisms. In the latter mechanism, both crossover and non-crossover pathways are possible. If NHEJ is the major pathway, indels and mutations may be the predominant genotoxicities. If HDR and gene addition are the major pathways, the possibility of off-target insertion should be carefully monitored.

Recent studies have reported that the frequency of small-scale indels varies depending on cell type106. For comparison with other studies and for evaluating the consistencies of gene-editing techniques, the frequencies of small-scale indels must be quantified for both ex vivo gene-edited cells and in vivo-biopsied cells.


The immunogenicity of gene-editing therapeutics is an important consideration that must be assessed regardless of the delivery method and nuclease type. ZFN, TALEN, and CRISPR/Cas9 are all exogenous and foreign to the human body. Notably, intracellular processing and presentation of these antigens by major histocompatibility molecules have not yet been studied. However, given the foreign nature of bacterial nucleases such as TALEN and CRISPR/Cas9, the induction of antibodies against these nucleases should be investigated107. In addition to inducing humoral immune responses, the presentation of antigens derived from these foreign nucleases with major histocompatibility complex I molecules on gene-edited cell surfaces may also evoke T-cell immune responses. Moreover, the possibility of autoimmunity to autologous and gene-edited cell therapeutics should be addressed.

When viral vectors are used for in vivo gene editing, the development of antibodies and T-cell immune responses against the viral vectors can limit the repeated use of the same viral vectors108. Indeed, the possibility of host immune responses caused by the bacterial origin of CRISPR/Cas9 proteins and viral vectors has been suggested to be one of the hurdles for the use of in vivo gene editing in viral-vector-based therapy109. AAV vectors have been most widely used in gene editing, because AAV vector was authorized for the delivery of Glybera, the first approved gene therapeutic in Europe. However, previous studies have shown that AAV vectors can induce antibodies and T-cell responses110,111; impurities in viral vector preparations, such as host cell proteins and other contaminants, can also influence the immunogenicity of the recombinant viral vectors that encode nucleases112. In addition, the virus capsid protein along with prolonged expression of the encoded nucleases after the delivery of in vivo viral-vector-based gene-editing therapeutics can induce antibodies and T-cell immune responses. Although non-viral vectors such as polymeric nanoparticles and lipid nanoparticles are considered to be less immunogenic than viral vectors109, the immunogenicity of the expressed nucleases should also be studied, as should the induction of antibodies against the proteins or peptides assembled within the nanoparticles that are used for in vivo non-viral delivery of nucleases and guide RNA.

Pharmacokinetics and biodistribution

The pharmacokinetics of gene-editing therapeutics may differ between ex vivo and in vivo strategies113,114. For ex vivo gene-editing therapeutics, pharmacokinetic studies of the time-dependent profiles of gene-edited cells must be performed. In addition to the level of gene-edited cells in the blood, the DNA levels of the gene-modified segments should be monitored through quantitative polymerase chain reactions. For in vivo gene-editing therapeutics, the form of the delivery system is expected to affect the pharmacokinetic profile. If viral vectors are used for the in vivo delivery of gene-editing nucleases, the pharmacokinetic profiles of the vectors should be traced by using relevant markers and by monitoring the encoded nuclease gene115. If protein forms of the nucleases are used for their in vivo delivery, levels of the protein nucleases should be monitored in the blood possibly by using enzyme-linked immunosorbent assays116. If mRNA or naked plasmid DNA is used for the in vivo delivery of nucleases via electroporation, the introduced forms of nuclease-encoding nucleic acids in the blood should also be quantified.

Studies of the in vivo distribution of ex vivo gene-editing therapeutics must address two aspects: the in vivo fate of the gene-edited cells and the distribution of nucleases used for gene modification. If ex vivo modifications are performed with protein forms of the nucleases, the distribution of nuclease protein levels would be relevant. If ex vivo modifications are performed with the mRNA form of nucleases, distribution studies would be best performed by following mRNA and protein levels in each organ. Moreover, if ex vivo modifications are performed with the DNA form of nucleases, distribution studies should investigate the DNA levels. Finally, if the ex vivo modification is performed with a viral vector encoding nuclease DNA, the persistence of foreign nuclease DNA in the body should be studied as well.

The in vivo distribution of in vivo gene-editing therapeutics may require more extensive investigations, owing to the systemic circulation of nucleases administered by various delivery vectors57,58,117. Currently, one of the major target diseases of gene-editing therapeutics is cancer. Thus, it would be important to know the target distribution and gene-editing effects of nucleases in cancer tissues. However, the distribution and modification of genes in normal tissues by systemically injected nucleases may cause severe side effects. Especially in cases where in vivo gene editing is performed with viral vectors encoding nucleases and additional genes, distribution studies should test the DNA levels of nucleases and inserted genes in all organs and germ cells.


The tumorigenicity of gene-edited therapeutics is an important aspect that must be investigated. Gene-modified CD34+ cells transduced with a retroviral vector carrying a gene encoding interleukin-2 receptor gamma have been clinically studied for the treatment of X-linked severe combined immunodeficiency. In that study, the retrovirus inserted itself near proto-oncogenes, thus resulting in the development of T-cell leukemia in four patients118. The potential tumorigenicity of induced pluripotent stem cells is considered to be one of the major hurdles for stem cell therapies119. In the case of induced pluripotent stem cells, retroviral gene insertion has been discussed as one of the factors that contribute to tumorigenicity. These studies have raised concerns about the tumorigenicity risks of insertional gene modifications at off-target sites. Therefore, strong evidence for the lack of tumorigenicity needs to be provided by using animal models before initiation of clinical trials. The use of Onco-chip120 to screen for changes in oncogenic protein expression would provide relevant supplementary data.

Safety of delivery systems

The safety of delivery systems for nucleases and other components of gene-editing systems should be studied separately121. For in vivo gene-editing viral vectors, in addition to immunogenicity, chromosomal integration and duration of expression should be monitored. The possibility of viral shedding in the cases in which viral vectors are used for in vivo gene-editing therapeutics must be carefully addressed. For viral vectors that are capable of gene editing, sexual transmission to spouses may cause unwanted gene editing. Moreover, the germline transmission of viral vectors should also be monitored.

Although the safety profiles of polymer- or lipid-based non-viral nanoparticles are more favorable because they do not insert into chromosomes and because they exhibit shorter in vivo half-lives than viral vectors, the relevant in vivo toxicities and inflammation issues must be addressed. In the case of physical device-based delivery methods, such as electroporation, risk factors such as device-mediated infection, inflammation, and tissue damage should be considered.


Depending on the purpose and disease target, the models used to demonstrate the efficacy of gene-editing therapeutics may vary. However, similarly to procedures used to address safety concerns, efficacy studies should use humanized animal models. Factors that should be considered in efficacy studies include, at minimum, the selection of dose, establishment of relevant animal disease models, efficiency of gene editing, and duration of efficacy1.

Dose units

Unlike chemical drugs, for which doses can be similarly expressed in grams, the dose units for different gene-editing therapeutics may differ depending on the type of delivery method. For ex vivo gene-editing therapeutics, the population of gene-edited cells among the total injected cells should be determined95. For in vivo gene-editing therapeutics, the injection dose may vary depending on the form in which nucleases are delivered. In cases in which nucleases are delivered in protein, mRNA, or plasmid DNA forms, the therapeutic effects should be studied on the basis of the administered dose in grams of protein or nucleic acid per body weight. In the case of nucleases delivered by viral vectors, the therapeutic effects should be studied on the basis of the administered doses according to viral titers.

Dose-efficacy correlation

Unlike chemical drugs, which generally show gradually increasing dose effects until a saturating dose is reached, gene-editing therapeutics may show rapid turn-on or turn-off effects over narrow dose ranges. As seen in the case of recently emerging RNA interference (RNAi)-based drugs that act at the mRNA level, rapid degradation of siRNA in the cytoplasmic environment necessitates high doses of injected siRNA. However, the action of gene-editing therapeutics at the genome level may result in an increase in potency, given that a single correction of the genome may result in perpetual correction of cellular protein levels1. Indel-based ex vivo gene-editing therapeutics may have 'on' or 'off' effects depending on the occurrence of DSBs at the target locus. Thus, the efficacy of gene-editing therapeutics should be studied at various dose units, depending on the method of nuclease delivery.

Efficiency of gene editing

The efficiency of gene editing must be quantified statistically. The efficiency of NHEJ- and HDR-mediated DSB repair is known to vary according to cell type and cell state1. Additionally, the efficiency of HDR-mediated gene addition has been reported to depend on the selected target gene122. Quantification of gene-editing efficiency would be helpful in comparing the efficiency of various vectors and standardizing the relationship between editing efficiency and therapeutic efficacy. Currently, the efficiency of in vivo HDR is known to be low123.

Duration of gene editing

Spontaneous mutations and instability of the genome may abrogate the therapeutic effects of gene editing. The duration of gene deletion, site-specific correction, or insertion at the target locus after treatment with gene-editing therapeutics should be monitored over months124. Especially in the case of in vivo viral-vector-based gene-editing therapeutics, the prolonged expression of nucleases in the body can reintroduce DSBs at nearby target sites and lead to instability125. The duration of gene editing should thus be more carefully monitored in the case of in vivo viral-vector-based gene-editing therapeutics.

Animal models for efficacy tests

Compared with chromosome-insertional viral-vector-based gene therapy, gene editing-based therapeutics have a novel ability to elaborately and controllably modify the genome by recognizing target gene sequences for deletion or insertion. In principle, humanized animal models should be used for studying the on-target efficacy of gene-editing therapeutics. Because the establishment of humanized animal models other than rodents may be difficult, non-human primates might be used, although their genomes differ from the human genome. When non-human primates are used as large animal models, in silico-based studies should be conducted to validate the similarity of target gene sequences between primates and humans124.

Quality control

Quality control of gene-editing therapeutics may not differ substantially from existing guidelines on gene therapeutics and gene-modified cell therapeutics. The quality control-related guidance for gene and cell therapeutics issued by the FDA and EMA are summarized in Table 4. The main factors to consider for quality control include purity and the absence of microbial contamination and endotoxins. Especially in the case of ex vivo gene-editing therapeutics, the viability and fraction of gene-modified cells must be controlled.


For ex vivo gene-editing therapeutics, the phenotypes of gene-edited cells should be characterized by using relevant markers. For in vivo gene-editing therapeutics, delivery vectors should be physicochemically characterized, and especially when non-viral chemical vectors are used, the sizes, zeta potentials, and nuclease/vector ratios must be determined59,60,126.


For ex vivo gene-editing therapeutics, consistent amounts of gene-edited cells should be produced with minimal batch-to-batch variations. Currently, autologous cells are isolated for ex vivo gene-editing therapeutics and are injected back into patients. However, transfection and gene-editing efficiencies may vary depending on the age and health of the individual. The ranges of acceptable gene-edited cell populations among total cells should be determined on the basis of statistical analysis of a sufficient number of patients124. For in vivo gene editing, therapeutics using viral vectors for delivery of nuclease genes should be tested for purity. Regardless of the ex vivo or in vivo gene-editing strategy, the injectable forms should be free of endotoxins.

Sterility of gene-editing therapeutics

For ex vivo gene-editing therapeutics, autologous cells are harvested, and nucleases and other gene-editing components such as single guide RNA, are introduced, after which the gene-edited cells are administered back into patients. Because the cells for ex vivo gene-editing therapeutics are processed outside the body, microbial studies should be performed. In the case of in vivo gene-editing therapeutics, viral vectors should be tested and shown to be free of pathogenic microbial and mycoplasma contamination55,124.

Viability of ex vivo therapeutics

In the case of ex vivo therapeutics, the viability of the gene-edited cells should be tested and consistently monitored. For this purpose, viability studies capable of differentiating gene-edited cells from non-edited cells in the total cell population should be designed and used53,124.

Manufacturing processes

The process for manufacturing gene-editing therapeutics should be validated to ensure the sterility and consistency of products54,56,124. For ex vivo gene-editing therapeutics, the procedure for isolating cells from patients, transduction of the cells with gene-editing delivery systems, and cultivation of the gene-edited cells should be validated. Additionally, quality assurance assays should be performed. For in vivo viral vector-based gene-editing therapeutics, the processes for amplifying, purifying, identifying, and quantifying viral vectors should be validated. For in vivo non-viral vector-based gene-editing therapeutics, the acceptable size ranges of non-viral vectors, nuclease loading, and processes for identifying nuclease-loaded non-viral vectors must be validated.


Gene editing is a rapidly growing technology in the overall field of biotechnology, thus reflecting its potential as an innovative genetic manipulation tool. Indeed, gene-editing therapy has attracted substantial interest from international pharmaceutical companies and has undergone a profusion of clinical trials within a relatively short period. Although gene-editing therapeutics have undergone remarkable progress, considerations of regulatory issues have not kept up with the pace of development. For clinical applications, safety issues should be thoroughly considered on the basis of gene-editing strategies, including ex vivo/in vivo methods, type of genetic materials, and delivery vectors. Given the potential for off-target genotoxicity and other crucial considerations, the release of new regulations tailored to gene-editing therapeutics would facilitate the development of this potent new treatment modality from bench-to-bedside.


  1. 1

    Cox DBT, Platt RJ, Zhang F . Therapeutic genome editing: prospects and challenges. Nat Med 2015; 21: 121–31.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Maeder ML, Gersbach CA . Genome-editing technologies for gene and cell therapy. Mol Ther 2016. doi: 10.1038/mt.2016.10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD . Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010; 11: 636–46.

    CAS  Article  Google Scholar 

  4. 4

    Joung JK, Sander JD . Talens: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013; 14: 49–55.

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Sander JD, Joung JK . CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32: 347–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6

    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F . Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8: 2281–308.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D . Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy. Hum Gene Ther 2015; 26: 443–51.

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Li L, He ZY, Wei XW, Gao GP, Wei YQ . Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum Gene Ther 2015; 26: 452–62.

    CAS  PubMed  Article  Google Scholar 

  9. 9

    LaFountaine JS, Fathe K, Smyth HD . Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int J Pharm 2015; 494: 180–94.

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 2015; 12: 1385–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Xu P, Tong Y, Liu XZ, Wang TT, Cheng L, Wang BY, et al. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C>T) mutation in β-thalassemia-derived iPSCs. Sci Rep 2015; 5: 12065.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Xu L, Park KH, Zhao L, Xu J, El Refaey M, Gao Y, et al. CRISPR-mediated genome editing restores dystrophin expression and function in MDX mice. Mol Ther 2016; 24: 564–9.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13

    Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, et al. Zinc finger nuclease-mediated CCR5 knockout hematopoietic stem cell transplantation controls HIV-1 in vivo. Nat Biotechnol 2010; 28: 839–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Kim BY, Jeong S, Lee SY, Lee SM, Gweon EJ, Ahn H, et al. Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC. Exp Mol Med 2016; 48: e237.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Valletta S, Dolatshad H, Bartenstein M, Yip BH, Bello E, Gordon S, et al. ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget 2015; 6: 44061.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Kishida T, Ejima A, Mazda O . Specific destruction of HIV proviral p17 gene in T lymphoid cells achieved by the genome editing technology. Front Microbiol 2016; 7: 1001.

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334TER-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 2016; 24: 556–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Butler JR, Wang ZY, Martens GR, Ladowski JM, Li P, Tector M, et al. Modified glycan models of pig-to-human xenotransplantation do not enhance the human-anti-pig T cell response. Transpl Immunol 2016; 35: 47–51.

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Osborn MJ, Starker CG, McElroy AN, Webber BR, Riddle MJ, Xia L, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther 2013; 21: 1151–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Merling RK, Sweeney CL, Chu J, Bodansky A, Choi U, Priel DL, et al. An AAVS1-targeted minigene platform for correction of iPSCs from all five types of chronic granulomatous disease. Mol Ther 2015; 23: 147–57.

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Hoban MD, Cost GJ, Mendel MC, Romero Z, Kaufman ML, Joglekar AV, et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 2015; 125: 2597–604.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Mock U, Machowicz R, Hauber I, Horn S, Abramowski P, Berdien B, et al. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Res 2015; 43: 5560–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Kim S, Kim D, Cho SW, Kim J, Kim J . Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 2014; 24: 1012–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Zuris JA, David B, Thompson DB, Yilai Shu Y, John P Guilinger JP, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotech 2015; 33: 73–80.

    CAS  Article  Google Scholar 

  25. 25

    Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A 2016; 113: 2868–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H . Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 2014; 24: 1020–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Liu J, Gaj T, Patterson JT, Sirk SJ . Barbas CF 3rd. Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One 2014; 9: e85755.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28

    Gaj T, Guo J, Kato Y, Sirk SJ, Barbas III CF . Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 2012; 9: 805–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Murlidharan G, Sakamoto K, Rao L, Corriher T, Wang D, Gao G, et al. CNS-restricted transduction and CRISPR/Cas9-mediated gene deletion with an engineered AAV vector. Mol Ther Nucleic Acids 2016; 5: e338.

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Abebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016; 351: 407–11.

    Article  CAS  Google Scholar 

  31. 31

    Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 2016; 34: 334–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Anguela XM, Sharma R, Doyon Y, Miller JC, Li H, Haurigot V, et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood 2013; 122: 3283–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Landau DJ, Brooks ED, Perez-Pinera P, Amarasekara H, Mefferd A, Li S, et al. In vivo zinc finger nuclease-mediated targeted integration of a glucose-6-phosphatase transgene promotes survival in mice with glycogen storage disease type IA. Mol Ther 2016; 24: 697–706.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Li C, Guan X, Du T, Jin W, Wu B, Liu Y, et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J Gen Virol 2015; 96: 2381–93.

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Li C, Ding L, Sun CW, Wu LC, Zhou D, Pawlik KM, et al. Novel HDAD/EBV reprogramming vector and highly efficient ad/CRISPR-Cas sickle cell disease gene correction. Sci Rep 2016; 6: 30422.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Yuan J, Wang J, Crain K, Fearns C, Kim KA, Hua KL, et al. Zinc-finger nuclease editing of human CXCR4 promotes HIV-1 CD4+T cell resistance and enrichment. Mol Ther 2012; 20: 849–59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Li L, Krymskaya L, Wang J, Henley J, Rao A, Cao LF, et al. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther 2013; 21: 1259–69.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Hou P, Chen S, Wang S, Yu X, Chen Y, Jiang M, et al. Genome editing of CXCR4 by CRISPR/Cas9 confers cells resistant to HIV-1 infection. Sci Rep 2015; 5: 15577.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    Kaminski R, Chen Y, Fischer T, Tedaldi E, Napoli A, Zhang Y, et al. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci Rep 2016; 6: 22555.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Karimova M, Beschorner N, Dammermann W, Chemnitz J, Indenbirken D, Bockmann JH, et al. CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Sci Rep 2015; 5: 13734.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Roehm PC, Shekarabi M, Wollebo HS, Bellizzi A, He L, Salkind J, et al. Inhibition of HSV-1 replication by gene editing strategy. Sci Rep 2016; 6: 23146.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Shin MH, He Y, Marrogi E, Piperdi S, Ren L, Khanna C, et al. A RUNX2-mediated epigenetic regulation of the survival of p53 defective cancer cells. PLoS Genet 2016; 12: e1005884.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. 43

    Dong C, Qu L, Wang H, Wei L, Dong Y, Xiong S . Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res 2015; 118: 110–7.

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Zhu W, Xie K, Xu Y, Wang L, Chen K, Zhang L, et al. CRISPR/Cas9 produces anti-hepatitis B virus effect in hepatoma cells and transgenic mouse. Virus Res 2016; 217: 125–32.

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Cradick TJ, Keck K, Bradshaw S, Jamieson AC, McCaffrey AP . Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther 2010; 18: 947–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Badia R, Riveira-Muñoz E, Clotet B, Esté JA, Ballana E . Gene editing using a zinc-finger nuclease mimicking the CCR5δ32 mutation induces resistance to CCR5-using HIV-1. J Antimicrob Chemother 2014; 69: 1755–9.

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Liao H, Xiao Y, Hu Y, Xiao Y, Yin Z, Liu L . Suppression of cellular proliferation and invasion by HMGB1 knockdown in bladder urothelial carcinoma cells. Oncol Res 2015; 22: 235–45.

    Article  Google Scholar 

  48. 48

    Lee CM, Flynn R, Hollywood JA, Scallan MF, Harrison PT . Correction of the δF508 mutation in the cystic fibrosis transmembrane conductance regulator gene by zinc-finger nuclease homology-directed repair. Biores Open Access 2012; 1: 99–108.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49

    Yao Y, Nashun B, Zhou T, Qin L, Qin L, Zhao S, et al. Generation of CD34+ cells from CCR5-disrupted human embryonic and induced pluripotent stem cells. Hum Gene Ther 2011; 23: 238–42.

    PubMed  Article  CAS  Google Scholar 

  50. 50

    Hu Z, Ding W, Zhu D, Yu L, Jiang X, Wang X, et al. TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy. J Clin Invest 2015; 125: 425–36.

    PubMed  Article  Google Scholar 

  51. 51

    Ding W, Hu Z, Zhu D, Jiang X, Yu L, Wang X, et al. Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells. Clin Cancer Res 2014; 20: 6495–503.

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Sun N, Liang J, Abil Z, Zhao H . Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst 2012; 8: 1255–63.

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Guideline on human cell-based medicinal products. European Medicines Agency 2008.

  54. 54

    Note for guidance on the quality, preclinical and clinical aspects of gene transfer medicinal products. European Medicines Agency 2001.

  55. 55

    Supplemental guidance on testing for replication competent retrovirus in retroviral vector based gene therapy products and during follow-up of patients in clinical trials using retroviral vectors. US. Food and Drug Administration 2006.

  56. 56

    Content and review of chemistry, manufacturing, and control (CMC) information for human gene therapy investigational new drug applications (INDs). US. Food and Drug Administration 2008.

  57. 57

    Guideline on the non-clinical studies before first clinical use of gene therapy medicinal products. European Medicines Agency 2008.

  58. 58

    Guideline on non-clinical testing for inadvertent germline transmission of gene transfer vectors. European Medicines Agency 2006.

  59. 59

    Preclinical assessment of investigational cellular and gene therapy products. US. Food and Drug Administration 2013.

  60. 60

    Guideline on quality, non-clinical and clinical aspects of medicinal products containing genetically modified cells. European Medicines Agency 2012.

  61. 61

    Potency tests for cellular and gene therapy products. US. Food and Drug Administration 2011.

  62. 62

    Gaj T, Gersbach CA, Barbas CF . ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013; 31: 397–405.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, et al. A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 2013; 31: 251–8.

    CAS  PubMed  Article  Google Scholar 

  64. 64

    Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 2011; 9: 467–77.

    CAS  PubMed  Article  Google Scholar 

  65. 65

    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339: 819–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Sung LY, Chen CL, Lin SY, Li KC, Yeh CL, Chen GY, et al. Efficient gene delivery into cell lines and stem cells using baculovirus. Nat Protoc 2014; 9: 1882–99.

    CAS  PubMed  Article  Google Scholar 

  67. 67

    Choi J, Dang Y, Abraham S, Ma H, Zhang J, Guo H, et al. Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther 2016; 23: 627–33.

    CAS  PubMed  Article  Google Scholar 

  68. 68

    Bellec J, Bacchetta M, Losa D, Anegon I, Chanson M, Huy Nguyen T . CFTR inactivation by lentiviral vector-mediated rna interference and CRISPR-Cas9 genome editing in human airway epithelial cells. Curr Gene Ther 2015; 15: 447–59.

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Benabdallah BF, Duval A, Rousseau J, Chapdelaine P, Holmes MC, Haddad E, et al. Targeted gene addition of microdystrophin in mice skeletal muscle via human myoblast transplantation. Mol Ther Nucleic Acids 2013; 2: e68.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70

    Araki M, Ishii T . Providing appropriate risk information on genome editing for patients. Trends Biotechnol 2016; 34: 86–90.

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG . Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15: 541–55.

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Yin C, Zhang T, Li F, Yang F, Putatunda R, Young WB, et al. Functional screening of guide RNAs targeting the regulatory and structural HIV-1 viral genome for a cure of AIDS. AIDS 2016; 30: 1163–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73

    Maggio I, Stefanucci L, Janssen JM, Liu J, Chen X, Mouly V, et al. Selection-free gene repair after adenoviral vector transduction of designer nucleases: Rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Res 2016; 44: 1449–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74

    Li M, Zhao H, Ananiev GE, Musser MT, Ness KH, Maglaque DL, et al. Establishment of reporter lines for detecting fragile X mental retardation (FMR1) gene reactivation in human neural cells. Stem Cells 2016. doi:10.1002/stem.2463.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75

    Su S, Hu B, Shao J, Shen B, Du J, Du Y, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 2016; 6: 20070.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Wu B, Jiang WG, Zhou D, Cui YX . Knockdown of EPHA1 by CRISPR/Cas9 promotes adhesion and motility of HRT18 colorectal carcinoma cells. Anticancer Res 2016; 36: 1211–9.

    CAS  PubMed  Article  Google Scholar 

  77. 77

    Young CS, Hicks MR, Ermolova NV, Nakano H, Jan M, Younesi S, et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 2016; 18: 533–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78

    Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 2011; 29: 1717–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Manotham K, Chattong S, Setpakdee A . Generation of CCR5-defective CD34 cells from ZFN-driven stop codon-integrated mesenchymal stem cell clones. J Biomed Sci 2015; 22: 1.

    CAS  Article  Google Scholar 

  80. 80

    Ma N, Liao B, Zhang H, Wang L, Shan Y, Xue Y, et al. Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced pluripotent stem cells. J Biol Chem 2013; 288: 34671–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81

    Nyquist MD, Li Y, Hwang TH, Manlove LS, Vessella RL, Silverstein KA, et al. TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer. Proc Natl Acad Sci U S A 2013; 110: 17492–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82

    Park C-Y, Kim J, Kweon J, Son JS, Lee JS, Yoo J-E, et al. Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc Natl Acad Sci U S A 2014; 111: 9253–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83

    Garate Z, Quintana-Bustamante O, Crane AM, Olivier E, Poirot L, Galetto R, et al. Generation of a high number of healthy erythroid cells from gene-edited pyruvate kinase deficiency patient-specific induced pluripotent stem cells. Stem Cell Rep 2015; 5: 1053–66.

    CAS  Article  Google Scholar 

  84. 84

    Ousterout DG, Kabadi AM, Thakore PI, Perez-Pinera P, Brown MT, Majoros WH, et al. Correction of dystrophin expression in cells from duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther 2015; 23: 523–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85

    Niu X, He W, Song B, Ou Z, Fan D, Chen Y, et al. Combining single-strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in beta-thalassemia-induced pluripotent stem cells. J Biol Chem 2016. doi: 10.1074/jbc.M116. 719237.

  86. 86

    Dreyer A-K, Hoffmann D, Lachmann N, Ackermann M, Steinemann D, Timm B, et al. TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials 2015; 69: 191–200.

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Mianné J, Chessum L, Kumar S, Aguilar C, Codner G, Hutchison M, et al. Correction of the auditory phenotype in C57BL/6N mice via CRISPR/Cas9-mediated homology directed repair. Genome Med 2016; 8: 16.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88

    Cottle RN, Lee CM, Archer D, Bao G . Controlled delivery of β-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection. Sci Rep 2015; 5: 16031.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, et al. Functional correction of large factor viii gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 2015; 17: 213–20.

    CAS  PubMed  Article  Google Scholar 

  90. 90

    Hu Z, Yu L, Zhu D, Ding W, Wang X, Zhang C, et al. Disruption of HPV16-E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. BioMed Res Int 2014; 2014: 612823.

    PubMed  PubMed Central  Google Scholar 

  91. 91

    Osborn MJ, Gabriel R, Webber BR, DeFeo AP, McElroy AN, Jarjour J, et al. Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther 2014; 26: 114–26.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  92. 92

    Fadel HJ, Morrison JH, Saenz DT, Fuchs JR, Kvaratskhelia M, Ekker SC, et al. TALEN knockout of the psip1 gene in human cells: Analyses of HIV-1 replication and allosteric integrase inhibitor mechanism. J Virol 2014; 88: 9704–17.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. 93

    Hoban MD, Lumaquin D, Kuo CY, Romero Z, Long J, Ho M, et al. CRISPR/Cas9-mediated correction of the sickle mutation in human cd34+ cells. Mol Ther 2016; 24: 1561–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 2016; 34: 328–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 2014; 370: 901–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Kohn DB, Porteus MH, Scharenberg AM . Ethical and regulatory aspects of genome editing. Blood 2016; 127: 2553–60.

    CAS  PubMed  Article  Google Scholar 

  97. 97

    Guidelines on the quality, safety, and efficacy of biotherapeutic products prepared by recombinant DNA technology. World Health Organization 2013.

  98. 98

    Maggio I, Gonçalves MA . Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol 2015; 33: 280–91.

    CAS  PubMed  Article  Google Scholar 

  99. 99

    Nelson CE, Gersbach CA . Engineering delivery vehicles for genome editing. Annu Rev Chem Biomol Eng 2016; 7: 637–62.

    CAS  PubMed  Article  Google Scholar 

  100. 100

    Gori, JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D . Delivery and specificity of CRISPR/Cas9 genome editing technologies for human gene therapy. Hum Gene Ther 2015; 26: 443–51.

    CAS  PubMed  Article  Google Scholar 

  101. 101

    Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH . Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 2015; 4: e264.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102

    Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae SB, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 2014; 24: 132–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103

    Tsai, SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 2015; 33: 187–97.

    CAS  PubMed  Article  Google Scholar 

  104. 104

    Kim, D, Bae S, Park J, Kim E, Kim S, Yu HR, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 2015; 12: 237–43.

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 2014; 11: 399–402.

    CAS  PubMed  Article  Google Scholar 

  106. 106

    Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 2015; 6: 363–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107

    Wang D, Mou H, Li S, Li Y, Hough S, Tran K, et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther 2015; 26: 432–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108

    Zaiss AK, Muruve DA . Immune responses to adeno-associated virus vectors. Curr Gene Ther 2005; 5: 323–31.

    CAS  PubMed  Article  Google Scholar 

  109. 109

    Dai WJ, Zhu LY, Yan ZY, Xu Y, Wang QL, Lu XJ . CRISPR-Cas9 for in vivo gene therapy: promise and hurdles. Mol Ther Nucleic Acid 2016; 5: 349.

    Article  CAS  Google Scholar 

  110. 110

    Mingozzi F, High KA . Immune responses to AAV in clinical trials. Curr Gene Ther 2011; 11: 321–30.

    CAS  PubMed  Article  Google Scholar 

  111. 111

    Hareendran S, Balakrishnan B, Sen D, Kumar S, Srivastava A, Jayandharan GR . Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Rev Med Virol 2013; 23: 399–413.

    CAS  PubMed  Article  Google Scholar 

  112. 112

    Mingozzi F, High KA . Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 2013; 122: 23–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113

    Norelli M, Casucci M, Bonini C, Bondanza A . Clinical pharmacology of CAR-T cells: linking cellular pharmacodynamics to pharmacokinetics and antitumor effects. Biochim Biophys Acta 2016; 1865: 90–100.

    CAS  PubMed  Google Scholar 

  114. 114

    Li HL, Li S, Shao JY, Lin XB, Cao Y, Jiang WQ, et al. Pharmacokinetic and pharmacodynamic study of intratumoral injection of an adenovirus encoding endostatin in patients with advanced tumors. Gene Ther 2008; 15: 247–56.

    CAS  PubMed  Article  Google Scholar 

  115. 115

    Green NK, Seymour LW . Adenoviral vectors: systemic delivery and tumor targeting. Cancer Gene Ther 2002; 9: 1036–42.

    CAS  PubMed  Article  Google Scholar 

  116. 116

    Guideline on the clinical investigation of the pharmacokinetics of therapeutic proteins. European Medicines Agency 2007.

  117. 117

    Nishikawa M, Takakura Y, Hashida M . Pharmacokinetic considerations regarding non-viral cancer gene therapy. Cancer Sci 2008; 99: 856–62.

    CAS  PubMed  Article  Google Scholar 

  118. 118

    Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008; 118: 3132–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119

    Lee AS, Tang C, Rao MS, Weissman IL, Wu JC . Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013; 19: 998–1004.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120

    Kohn DB, Porteus MH, Scharenberg AM . Ethical and regulatory aspects of genome editing. Blood 2016; 127: 2553–60.

    CAS  PubMed  Article  Google Scholar 

  121. 121

    Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, et al. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2015; 6: 30675.

    PubMed  PubMed Central  Article  Google Scholar 

  122. 122

    Araki M, Ishii T . International regulatory landscape and integration of corrective genome editing into in vitro fertilization. Reprod Biol Endocrinol 2014; 12: 1.

    Article  CAS  Google Scholar 

  123. 123

    Xue HY, Zhang X, Wang Y, Xiaojie L, Dai WJ, Xu Y . In vivo gene therapy potentials of CRISPR-Cas9. Gene Ther 2016; 23: 557–9.

    CAS  PubMed  Article  Google Scholar 

  124. 124

    Guidance for human somatic cell therapy and gene therapy. U.S. Food and Drug Administration 1998.

  125. 125

    Maeder ML, Gersbach CA . Genome-editing technologies for gene and cell therapy. Mol Ther 2016; 24: 430–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126

    Gene therapy product quality aspects in the production of vectors and genetically modified somatic cells. European Medicines Agency 1995.

Download references


This research was supported by a grant (No 16172MFDS206) from the Ministry of Food and Drug Safety in 2016 and from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No NRF-2016R1A6A3A11930441).

Author information



Corresponding authors

Correspondence to Gayong Shim or Yu-Kyoung Oh.

PowerPoint slides

Rights and permissions

This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shim, G., Kim, D., Park, G. et al. Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacol Sin 38, 738–753 (2017).

Download citation


  • gene editing
  • zinc finger nuclease
  • transcription activator-like effector nuclease
  • CRISPR/Cas9
  • delivery system
  • regulation
  • safety

Further reading