Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Acta Pharmacologica Sinica
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. acta pharmacologica sinica
  3. review
  4. article
Tumor necrosis factor and cancer, buddies or foes?
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Inflammation and tumor progression: signaling pathways and targeted intervention

12 July 2021

Huakan Zhao, Lei Wu, … Yongsheng Li

Harnessing TRAIL-induced cell death for cancer therapy: a long walk with thrilling discoveries

04 October 2022

Antonella Montinaro & Henning Walczak

Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study

21 September 2020

Hui Yu, Liangbin Lin, … Hongbo Hu

Transmembrane TNF-alpha promotes chemoresistance in breast cancer cells

21 March 2018

Zunyue Zhang, Guohong Lin, … Xiang-Ping Yang

MLKL in cancer: more than a necroptosis regulator

05 May 2021

Sofie Martens, Jolien Bridelance, … Nozomi Takahashi

Broadening horizons: the role of ferroptosis in cancer

29 January 2021

Xin Chen, Rui Kang, … Daolin Tang

TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-κB pathway

04 February 2020

Wenjing Liu, Xiaoqing Lu, … Ceshi Chen

Targeting TGFβ signal transduction for cancer therapy

08 January 2021

Sijia Liu, Jiang Ren & Peter ten Dijke

The pleiotropic effects of TNFα in breast cancer subtypes is regulated by TNFAIP3/A20

30 August 2018

Eunmi Lee, Maria Ouzounova, … Hasan Korkaya

Download PDF
  • Published: 01 November 2008

Tumor necrosis factor and cancer, buddies or foes?

  • Xia Wang1 &
  • Yong Lin2 

Acta Pharmacologica Sinica volume 29, pages 1275–1288 (2008)Cite this article

  • 6467 Accesses

  • 376 Citations

  • 29 Altmetric

  • Metrics details

Abstract

Tumor necrosis factor (TNF) is a multifunctional cytokine that plays important roles in diverse cellular events such as cell survival, proliferation, differentiation, and death. As a pro-inflammatory cytokine, TNF is secreted by inflammatory cells, which may be involved in inflammation-associated carcinogenesis. TNF exerts its biological functions through activating distinct signaling pathways such as nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK). NF-κB is a major cell survival signal that is anti-apoptotic, whereas sustained JNK activation contributes to cell death. The crosstalk between the NF-κB and JNK is involved in determining cellular outcomes in response to TNF. In regard to cancer, TNF is a double-dealer. On one hand, TNF could be an endogenous tumor promoter, because TNF stimulates the growth, proliferation, invasion and metastasis, and tumor angiogenesis of cancer cells. On the other hand, TNF could be a cancer killer. The property of TNF in inducing cancer cell death renders it a potential cancer therapeutic, although much work is needed to reduce its toxicity for systematic TNF administration. Recent studies have focused on sensitizing cancer cells to TNF-induced apoptosis through inhibiting survival signals such as NF-κB, by combined therapy. In this article we provide an overview of the roles of TNF-induced signaling pathways in cancer biology with specific emphasis on carcinogenesis and cancer therapy.

References

  1. Matthews N, Watkins JF . Tumour-necrosis factor from the rabbit. I. Mode of action, specificity and physicochemical properties. Br J Cancer 1978; 38: 302–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Green S, Dobrjansky A, Chiasson MA . Murine tumor necrosis-inducing factor: purification and effects on myelomonocytic leukemia cells. J Natl Cancer Inst 1982; 68: 997–1003.

    CAS  PubMed  Google Scholar 

  3. Aggarwal BB . Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003; 3: 745–56.

    CAS  PubMed  Google Scholar 

  4. Wajant H, Pfizenmaier K, Scheurich P . Tumor necrosis factor signaling. Cell Death Differ 2003; 10: 45–65.

    CAS  PubMed  Google Scholar 

  5. Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z . The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 2000; 12: 419–29.

    CAS  PubMed  Google Scholar 

  6. Yang J, Lin Y, Guo Z, Cheng J, Huang J, Deng L, et al. The essential role of MEKK3 in TNF-induced NF-kappaB activation. Nat Immunol 2001; 2: 620–4.

    CAS  PubMed  Google Scholar 

  7. Karin M, Yamamoto Y, Wang QM . The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 2004; 3: 17–26.

    CAS  PubMed  Google Scholar 

  8. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M . Reactive oxygen species promote TNF alpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005; 120: 649–61.

    CAS  PubMed  Google Scholar 

  9. Devin A, Lin Y, Liu ZG . The role of the death-domain kinase RIP in tumour-necrosis-factor-induced activation of mitogen-activated protein kinases. EMBO Rep 2003; 4: 623–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu ZG, Hsu H, Goeddel DV, Karin M . Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 1996; 87: 565–76.

    CAS  PubMed  Google Scholar 

  11. Liu J, Lin A . Role of JNK activation in apoptosis: a double-edged sword. Cell Res 2005; 15: 36–42.

    PubMed  Google Scholar 

  12. Lin A, Dibling B . The true face of JNK activation in apoptosis. Aging Cell 2002; 1: 112–6.

    CAS  PubMed  Google Scholar 

  13. Ventura JJ, Cogswell P, Flavell RA, Baldwin AS Jr, Davis RJ . JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 2004; 18: 2905–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang X . The expanding role of mitochondria in apoptosis. Genes Dev 2001; 15: 2922–33.

    CAS  PubMed  Google Scholar 

  15. Wajant H . Death receptors. Essays Biochem 2003; 39: 53–71.

    CAS  PubMed  Google Scholar 

  16. Petersen SL, Wang L, Yalcin-Chin A, Li L, Peyton M, Minna J, et al. Autocrine TNF alpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 2007; 12: 445–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang L, Du F, Wang X . TNF-alpha induces two distinct caspase-8 activation pathways. Cell 2008; 133: 693–703.

    CAS  PubMed  Google Scholar 

  18. Lin Y, Choksi S, Shen HM, Yang QF, Hur GM, Kim YS, et al. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 2004; 279: 10822–8.

    CAS  PubMed  Google Scholar 

  19. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 2000; 1: 489–95.

    CAS  PubMed  Google Scholar 

  20. Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, et al. Identification of RIP 1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008; 4: 313–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim YS, Morgan MJ, Choksi S, Liu ZG . TNF-induced activation of the Noxl NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell 2007; 26: 675–87.

    CAS  PubMed  Google Scholar 

  22. Lin Y, Devin A, Rodriguez Y, Liu ZG . Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 1999; 13: 2514–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ferrajoli A, Keating MJ, Manshouri T, Giles FJ, Dey A, Estrov Z, et al. The clinical significance of tumor necrosis factor-alpha plasma level in patients having chronic lymphocytic leukemia. Blood 2002; 100: 1215–9.

    CAS  PubMed  Google Scholar 

  24. Ahmed MI, Salahy EE, Fayed ST, El-Hefnawy NG, Khalifa A . Human papillomavirus infection among Egyptian females with cervical carcinoma: relationship to spontaneous apoptosis and TNF-alpha. Clin Biochem 2001; 34: 491–8.

    CAS  PubMed  Google Scholar 

  25. Szlosarek PW, Grimshaw MJ, Kulbe H, Wilson JL, Wilbanks GD, Burke F, et al. Expression and regulation of tumor necrosis factor alpha in normal and malignant ovarian epithelium. Mol Cancer Ther 2006; 5: 382–90.

    CAS  PubMed  Google Scholar 

  26. Michalaki V, Syrigos K, Charles P, Waxman J . Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer 2004; 90: 2312–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tselepis C, Perry I, Dawson C, Hardy R, Darnton SJ, McConkey C, et al. Tumour necrosis factor-alpha in Barrett's oesophagus: a potential novel mechanism of action. Oncogene 2002; 21: 6071–81.

    CAS  PubMed  Google Scholar 

  28. Garcia-Tunon I, Ricote M, Ruiz A, Fraile B, Paniagua R, Royuela M . Role of tumor necrosis factor-alpha and its receptors in human benign breast lesions and tumors (in situ and infiltrative). Cancer Sci 2006; 97: 1044–9.

    CAS  PubMed  Google Scholar 

  29. Berberoglu U, Yildirim E, Celen O . Serum levels of tumor necrosis factor alpha correlate with response to neoadjuvant chemotherapy in locally advanced breast cancer. Int J Biol Markers 2004; 19: 130–4.

    CAS  PubMed  Google Scholar 

  30. Kim S, Keku TO, Martin C, Galanko J, Woosley JT, Schroeder JC, et al. Circulating levels of inflammatory cytokines and risk of colorectal adenomas. Cancer Res 2008; 68: 323–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bel Hadj Jrad B, Chatti A, Laatiri A, Ahmed SB, Romdhane A, Ajimi S, et al. Tumor necrosis factor promoter gene polymorphism associated with increased susceptibility to non-Hodgkin's lymphomas. Eur J Haematol 2007; 78: 117–22.

    PubMed  Google Scholar 

  32. Rothman N, Skibola CF, Wang SS, Morgan G, Lan Q, Smith MT, et al. Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the InterLymph Consortium. Lancet Oncol 2006; 7: 27–38.

    CAS  PubMed  Google Scholar 

  33. Ho SY, Wang YJ, Chen HL, Chen CH, Chang CJ, Wang PJ, et al. Increased risk of developing hepatocellular carcinoma associated with carriage of the TNF2 allele of the -308 tumor necrosis factor-alpha promoter gene. Cancer Causes Control 2004; 15: 657–63.

    PubMed  Google Scholar 

  34. Machado JC, Figueiredo C, Canedo P, Pharoah P, Carvalho R, Nabais S, et al. A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma. Gastroenterology 2003; 125: 364–71.

    CAS  PubMed  Google Scholar 

  35. Duarte I, Santos A, Sousa H, Catarino R, Pinto D, Matos A, et al. G-308A TNF-alpha polymorphism is associated with an increased risk of invasive cervical cancer. Biochem Biophys Res Commun 2005; 334: 588–92.

    CAS  PubMed  Google Scholar 

  36. Garrity-Park MM, Loftus EV Jr, Bryant SC, Sandborn WJ, Smyrk TC . Tumor necrosis factor-alpha polymorphisms in ulcerative colitis-associated colorectal cancer. Am J Gastroenterol 2008; 103: 407–15.

    CAS  PubMed  Google Scholar 

  37. Shih CM, Lee YL, Chiou HL, Chen W, Chang GC, Chou MC, et al. Association of TNF-alpha polymorphism with susceptibility to and severity of non-small cell lung cancer. Lung Cancer 2006; 52: 15–20.

    PubMed  Google Scholar 

  38. Azmy IA, Balasubramanian SP, Wilson AG, Stephenson TJ, Cox A, Brown NJ, et al. Role of tumour necrosis factor gene polymorphisms (-308 and -238) in breast cancer susceptibility and severity. Breast Cancer Res 2004; 6: R395–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Juszczynski P, Kalinka E, Bienvenu J, Woszczek G, Borowiec M, Robak T, et al. Human leukocyte antigens class II and tumor necrosis factor genetic polymorphisms are independent predictors of non-Hodgkin lymphoma outcome. Blood 2002; 100: 3037–40.

    PubMed  Google Scholar 

  40. Jang WH, Yang YI, Yea SS, Lee YJ, Chun JH, Kim HI, et al. The -238 tumor necrosis factor-alpha promoter polymorphism is associated with decreased susceptibility to cancers. Cancer Lett 2001; 166: 41–6.

    CAS  PubMed  Google Scholar 

  41. Wu MS, Chen LT, Shun CT, Huang SP, Chiu HM, Wang HP, et al. Promoter polymorphisms of tumor necrosis factor-alpha are associated with risk of gastric mucosa-associated lymphoid tissue lymphoma. Int J Cancer 2004; 110: 695–700.

    CAS  PubMed  Google Scholar 

  42. Purdue MP, Lan Q, Kricker A, Grulich AE, Vajdic CM, Turner J, et al. Polymorphisms in immune function genes and risk of non-Hodgkin lymphoma: findings from the New South Wales non-Hodgkin Lymphoma Study. Carcinogenesis 2007; 28: 704–12.

    CAS  PubMed  Google Scholar 

  43. Hellmig S, Fischbach W, Goebeler-Kolve ME, Folsch UR, Hampe J, Schreiber S . A functional promotor polymorphism of TNF-alpha is associated with primary gastric B-Cell lymphoma. Am J Gastroenterol 2005; 100: 2644–9.

    CAS  PubMed  Google Scholar 

  44. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, et al. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 2008; 118: 560–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhaorigetu S, Yanaka N, Sasaki M, Watanabe H, Kato N . Silk protein, sericin, suppresses DMBA-TPA-induced mouse skin tumori-genesis by reducing oxidative stress, inflammatory responses and endogenous tumor promoter TNF-alpha. Oncol Rep 2003; 10: 537–43.

    CAS  PubMed  Google Scholar 

  46. Scott KA, Moore RJ, Arnott CH, East N, Thompson RG, Scallon BJ, et al. An anti-tumor necrosis factor-alpha antibody inhibits the development of experimental skin tumors. Mol Cancer Ther 2003; 2: 445–51.

    CAS  PubMed  Google Scholar 

  47. Oshima M, Oshima H, Matsunaga A, Taketo MM . Hyperplastic gastric tumors with spasmolytic polypeptide-expressing metaplasia caused by tumor necrosis factor-alpha-dependent inflammation in cyclooxygenase-2/microsomal prostaglandin E synthase-1 transgenic mice. Cancer Res 2005; 65: 9147–51.

    CAS  PubMed  Google Scholar 

  48. Wheeler DL, Ness KJ, Oberley TD, Verma AK . Protein kinase Cepsilon is linked to 12-O-tetradecanoylphorbol-13-acetate-induced tumor necrosis factor-alpha ectodomain shedding and the development of metastatic squamous cell carcinoma in protein kinase Cepsilon transgenic mice. Cancer Res 2003; 63: 6547–55.

    CAS  PubMed  Google Scholar 

  49. Suzukawa K, Weber TJ, Colburn NH . AP-1, NF-kappa-B, and ERK activation thresholds for promotion of neoplastic transformation in the mouse epidermal JB6 model. Environ Health Perspect 2002; 110: 865–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hu J, Nakano H, Sakurai H, Colburn NH . Insufficient p65 phos-phorylation at S536 specifically contributes to the lack of NF-kappaB activation and transformation in resistant JB6 cells. Carcinogenesis 2004; 25: 1991–2003.

    CAS  PubMed  Google Scholar 

  51. Arnott CH, Scott KA, Moore RJ, Hewer A, Phillips DH, Parker P, et al. Tumour necrosis factor-alpha mediates tumour promotion via a PKC alpha- and AP-1-dependent pathway. Oncogene 2002; 21: 4728–38.

    CAS  PubMed  Google Scholar 

  52. Yang H, Bocchetta M, Kroczynska B, Elmishad AG, Chen Y, Liu Z, et al. TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci USA 2006; 103: 10397–402.

    CAS  PubMed  Google Scholar 

  53. Yan Y, Li J, Ouyang W, Ma Q, Hu Y, Zhang D, et al. NFAT3 is specifically required for TNF-alpha-induced cyclooxygenase-2 (COX-2) expression and transformation of C141 cells. J Cell Sci 2006; 119 ( Pt 14): 2985–94.

    CAS  PubMed  Google Scholar 

  54. Devoogdt N, Revets H, Kindt A, Liu YQ, De Baetselier P, Ghassabeh GH . The tumor-promoting effect of TNF-alpha involves the induction of secretory leukocyte protease inhibitor. J Immunol 2006; 177: 8046–52.

    CAS  PubMed  Google Scholar 

  55. Piao YS, Du YC, Oshima H, Jin JC, Nomura M, Yoshimoto T, et al. Platelet-type 12-lipoxygenase accelerates tumor promotion of mouse epidermal cells through enhancement of cloning efficiency. Carcinogenesis 2008; 29: 440–7.

    CAS  PubMed  Google Scholar 

  56. Komori J, Marusawa H, Machimoto T, Endo Y, Kinoshita K, Kou T, et al. Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma. Hepatology 2008; 47: 888–96.

    CAS  PubMed  Google Scholar 

  57. Yan B, Wang H, Rabbani ZN, Zhao Y, Li W, Yuan Y, et al. Tumor necrosis factor-alpha is a potent endogenous mutagen that promotes cellular transformation. Cancer Res 2006; 66: 11565–70.

    CAS  PubMed  Google Scholar 

  58. Babbar N, Casero RA Jr . Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis. Cancer Res 2006; 66: 11125–30.

    CAS  PubMed  Google Scholar 

  59. Nabors LB, Suswam E, Huang Y, Yang X, Johnson MJ, King PH . Tumor necrosis factor alpha induces angiogenic factor up-regulation in malignant glioma cells: a role for RNA stabilization and HuR. Cancer Res 2003; 63: 4181–7.

    CAS  PubMed  Google Scholar 

  60. Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, et al. The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res 2007; 67: 585–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tomita Y, Yang X, Ishida Y, Nemoto-Sasaki Y, Kondo T, Oda M, et al. Spontaneous regression of lung metastasis in the absence of tumor necrosis factor receptor p55. Int J Cancer 2004; 112: 927–33.

    CAS  PubMed  Google Scholar 

  62. Bates RC, DeLeo MJ 3rd, Mercurio AM . The epithelial-mesen-chymal transition of colon carcinoma involves expression of IL-8 and CXCR-1-mediated chemotaxis. Exp Cell Res 2004; 299: 315–24.

    CAS  PubMed  Google Scholar 

  63. Bates RC, Mercurio AM . Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 2003; 14: 1790–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chuang MJ, Sun KH, Tang SJ, Deng MW, Wu YH, Sung JS, et al. Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci 2008; 99: 905–1.

    CAS  PubMed  Google Scholar 

  65. Cheng SM, Xing B, Li JC, Cheung BK, Lau AS . Interferon-gamma regulation of TNFalpha-induced matrix metalloproteinase 3 expression and migration of human glioma T98G cells. Int J Cancer 2007; 121: 1190–6.

    CAS  PubMed  Google Scholar 

  66. Esteve PO, Chicoine E, Robledo O, Aoudjit F, Descoteaux A, Potworowski EF, et al. Protein kinase C-zeta regulates transcription of the matrix metalloproteinase-9 gene induced by IL-1 and TNF-alpha in glioma cells via NF-kappa B. J Biol Chem 2002; 277: 35150–5.

    CAS  PubMed  Google Scholar 

  67. Hagemann T, Robinson SC, Schulz M, Trumper L, Balkwill FR, Binder C . Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis 2004; 25: 1543–9.

    CAS  PubMed  Google Scholar 

  68. Montesano R, Soulie P, Eble JA, Carrozzino F . Tumour necrosis factor alpha confers an invasive, transformed phenotype on mammary epithelial cells. J Cell Sci 2005; 118: 3487–500.

    CAS  PubMed  Google Scholar 

  69. Mon NN, Hasegawa H, Thant AA, Huang P, Tanimura Y, Senga T, et al. A role for focal adhesion kinase signaling in tumor necrosis factor-alpha-dependent matrix metalloproteinase-9 production in a cholangiocarcinoma cell line, CCKS1. Cancer Res 2006; 66: 6778–84.

    CAS  PubMed  Google Scholar 

  70. Hagemann T, Wilson J, Kulbe H, Li NF, Leinster DA, Charles K, et al. Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol 2005; 175: 1197–205.

    CAS  PubMed  Google Scholar 

  71. Ziprin P, Ridgway PF, Pfistermuller KL, Peck DH, Darzi AW . ICAM-1 mediated tumor-mesothelial cell adhesion is modulated by IL-6 and TNF-alpha: a potential mechanism by which surgical trauma increases peritoneal metastases. Cell Commun Adhes 2003; 10: 141–54.

    CAS  PubMed  Google Scholar 

  72. van Grevenstein WM, Holland LJ, van Rossen ME, van Koetsveld PM, Jeekel J, van Eijck CH . Inflammatory cytokines stimulate the adhesion of colon carcinoma cells to mesothelial monolayers. Dig Dis Sci 2007; 52: 2775–83.

    CAS  PubMed  Google Scholar 

  73. Choo MK, Sakurai H, Koizumi K, Saiki I . TAKl-mediated stress signaling pathways are essential for TNF-alpha-promoted pulmonary metastasis of murine colon cancer cells. Int J Cancer 2006; 118: 2758–64.

    CAS  PubMed  Google Scholar 

  74. Kitakata H, Nemoto-Sasaki Y, Takahashi Y, Kondo T, Mai M, Mukaida N . Essential roles of tumor necrosis factor receptor p55 in liver metastasis of intrasplenic administration of colon 26 cells. Cancer Res 2002; 62: 6682–7.

    CAS  PubMed  Google Scholar 

  75. Kulbe H, Hagemann T, Szlosarek PW, Balkwill FR, Wilson JL . The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells. Cancer Res 2005; 65: 10355–62.

    CAS  PubMed  Google Scholar 

  76. Mochizuki Y, Nakanishi H, Kodera Y, Ito S, Yamamura Y, Kato T, et al. TNF-alpha promotes progression of peritoneal metastasis as demonstrated using a green fluorescence protein (GFP)-tagged human gastric cancer cell line. Clin Exp Metastasis 2004; 21: 39–47.

    CAS  PubMed  Google Scholar 

  77. Alkhamesi NA, Ziprin P, Pfistermuller K, Peck DH, Darzi AW . ICAM-1 mediated peritoneal carcinomatosis, a target for therapeutic intervention. Clin Exp Metastasis 2005; 22: 449–59.

    CAS  PubMed  Google Scholar 

  78. Liang M, Zhang P, Fu J . Up-regulation of LOX-1 expression by TNF-alpha promotes trans-endothelial migration of MDA-MB-231 breast cancer cells. Cancer Lett 2007; 258: 31–7.

    CAS  PubMed  Google Scholar 

  79. Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, et al. Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci USA 2008; 105: 652–6.

    CAS  PubMed  Google Scholar 

  80. Nakagawa J, Saio M, Tamakawa N, Suwa T, Frey AB, Nonaka K, et al. TNF expressed by tumor-associated macrophages, but not microglia, can eliminate glioma. Int J Oncol 2007; 30: 803–11.

    CAS  PubMed  Google Scholar 

  81. Villeneuve J, Tremblay P, Vallieres L . Tumor necrosis factor reduces brain tumor growth by enhancing macrophage recruitment and microcyst formation. Cancer Res 2005; 65: 3928–36.

    CAS  PubMed  Google Scholar 

  82. Dace DS, Chen PW, Niederkorn JY CD8+ T cells circumvent immune privilege in the eye and mediate intraocular tumor rejection by a TNF-alpha-dependent mechanism. J Immunol 2007; 178: 6115–22.

    CAS  PubMed  Google Scholar 

  83. Zhang B, Karrison T, Rowley DA, Schreiber H . IFN-gamma- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J Clin Invest 2008; 118: 1398–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Larmonier N, Cathelin D, Larmonier C, Nicolas A, Merino D, Janikashvili N, et al. The inhibition of TNF-alpha anti-tumoral properties by blocking antibodies promotes tumor growth in a rat model. Exp Cell Res 2007; 313: 2345–55.

    CAS  PubMed  Google Scholar 

  85. Zhao X, Mohaupt M, Jiang J, Liu S, Li B, Qin Z . Tumor necrosis factor receptor 2-mediated tumor suppression is nitric oxide dependent and involves angiostasis. Cancer Res 2007; 67: 4443–50.

    CAS  PubMed  Google Scholar 

  86. Karin M, Lawrence T, Nizet V . Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 2006; 124: 823–35.

    CAS  PubMed  Google Scholar 

  87. Stone JH, Holbrook JT, Marriott MA, Tibbs AK, Sejismundo LP, Min YI, et al. Solid malignancies among patients in the Wegener's Granulomatosis Etanercept Trial. Arthritis Rheum 2006; 54: 1608–18.

    CAS  PubMed  Google Scholar 

  88. Shibata H, Yoshioka Y, Ikemizu S, Kobayashi K, Yamamoto Y, Mukai Y, et al. Functionalization of tumor necrosis factor-alpha using phage display technique and PEGylation improves its antitumor therapeutic window. Clin Cancer Res 2004; 10: 8293–300.

    CAS  PubMed  Google Scholar 

  89. Lucas R, Montesano R, Pepper MS, Hafner M, Sablon E, Dunant Y, et al. Lectin-deficient TNF mutants display comparable anti-tumour but reduced pro-metastatic potential as compared to the wild-type molecule. Int J Cancer 2001; 91: 543–9.

    CAS  PubMed  Google Scholar 

  90. Yan Z, Zhao N, Wang Z, Li B, Bao C, Shi J, et al. A mutated human tumor necrosis factor-alpha improves the therapeutic index in vitro and in vivo. Cytotherapy 2006; 8: 415–23.

    CAS  PubMed  Google Scholar 

  91. Wang X, Ju W, Renouard J, Aden J, Belinsky SA, Lin Y 17-allyl-amino-17-demethoxygeldanamycin synergistically potentiates tumor necrosis factor-induced lung cancer cell death by blocking the nuclear factor-kappa B pathway. Cancer Res 2006; 66: 1089–95.

    CAS  PubMed  Google Scholar 

  92. Zhang S, Lin ZN, Yang CF, Shi X, Ong CN, Shen HM . Suppressed NF-kappaB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-alpha-induced apoptosis in human cancer cells. Carcinogenesis 2004; 25: 2191–9.

    CAS  PubMed  Google Scholar 

  93. Fas SC, Baumann S, Zhu JY, Giaisi M, Treiber MK, Mahlknecht U, et al. Wogonin sensitizes resistant malignant cells to TNFalpha- and TRAIL-induced apoptosis. Blood 2006; 108: 3700–6.

    CAS  PubMed  Google Scholar 

  94. Ju W, Wang X, Shi H, Chen W, Belinsky SA, Lin YA critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-kappa B pathway and sensitization of apoptosis in lung cancer cells. Mol Pharmacol 2007; 71: 1381–8.

    CAS  PubMed  Google Scholar 

  95. Rae C, Langa S, Tucker SJ, MacEwan DJ . Elevated NF-kappa B responses and FLIP levels in leukemic but not normal lymphocytes: reduction by salicylate allows TNF-induced apoptosis. Proc Natl Acad Sci USA 2007; 104: 12790–5.

    CAS  PubMed  Google Scholar 

  96. Shukla S, Gupta S . Suppression of constitutive and tumor necrosis factor alpha-induced nuclear factor (NF)-kappa B activation and induction of apoptosis by apigenin in human prostate carcinoma PC-3 cells: correlation with down-regulation of NF-kappaB-responsive genes. Clin Cancer Res 2004; 10: 3169–78.

    CAS  PubMed  Google Scholar 

  97. Shishodia S, Sethi G, Konopleva M, Andreeff M, Aggarwal BB . A synthetic triterpenoid, CDDO-Me, inhibits IkappaBalpha kinase and enhances apoptosis induced by TNF and chemotherapeutic agents through down-regulation of expression of nuclear factor kappaB-regulated gene products in human leukemic cells. Clin Cancer Res 2006; 12: 1828–38.

    CAS  PubMed  Google Scholar 

  98. Wang X, Chen W, Lin Y Sensitization of TNF-induced cytotoxicity in lung cancer cells by concurrent suppression of the NF-kappaB and Akt pathways. Biochem Biophys Res Commun 2007; 355: 807–12.

    CAS  PubMed  Google Scholar 

  99. Duverger V, Murphy AM, Sheehan D, England K, Cotter TG, Hayes I, et al. The anticancer drug mithramycin A sensitises tumour cells to apoptosis induced by tumour necrosis factor (TNF). Br J Cancer 2004; 90: 2025–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Mathiasen IS, Hansen CM, Foghsgaard L, Jaattela M . Sensitization to TNF-induced apoptosis by 1,25-dihydroxy vitamin D(3) involves up-regulation of the TNF receptor 1 and cathepsin B. Int J Cancer 2001; 93: 224–31.

    CAS  PubMed  Google Scholar 

  101. Cao W, Chi WH, Wang J, Tang JJ, Lu YJ . TNF-alpha promotes Doxorubicin-induced cell apoptosis and anti-cancer effect through downregulation of p21 in p53-deficient tumor cells. Biochem Biophys Res Commun 2005; 330: 1034–40.

    CAS  PubMed  Google Scholar 

  102. Hambek M, Solbach C, Schnuerch HG, Roller M, Stegmueller M, Sterner-Kock A, et al. Tumor necrosis factor alpha sensitizes low epidermal growth factor receptor (EGFR)-expressing carcinomas for anti-EGFR therapy. Cancer Res 2001; 61: 1045–9.

    CAS  PubMed  Google Scholar 

  103. Ando K, Ohmori T, Inoue F, Kadofuku T, Hosaka T, Ishida H, et al. Enhancement of sensitivity to tumor necrosis factor alpha in non-small cell lung cancer cells with acquired resistance to gefitinib. Clin Cancer Res 2005; 11: 8872–9.

    CAS  PubMed  Google Scholar 

  104. Hayes AJ, Neuhaus SJ, Clark MA, Thomas JM . Isolated limb perfusion with melphalan and tumor necrosis factor alpha for advanced melanoma and soft-tissue sarcoma. Ann Surg Oncol 2007; 14: 230–8.

    PubMed  Google Scholar 

  105. Grunhagen DJ, de Wilt JH, ten Hagen TL, Eggermont AM . Technology insight: Utility of TNF-alpha-based isolated limb perfusion to avoid amputation of irresectable tumors of the extremities. Nat Clin Pract Oncol 2006; 3: 94–103.

    PubMed  Google Scholar 

  106. Lans TE, Grunhagen DJ, de Wilt JH, van Geel AN, Eggermont AM . Isolated limb perfusions with tumor necrosis factor and melphalan for locally recurrent soft tissue sarcoma in previously irradiated limbs. Ann Surg Oncol 2005; 12: 406–11.

    CAS  PubMed  Google Scholar 

  107. Farma JM, Puhlmann M, Soriano PA, Cox D, Paciotti GF, Tamarkin L, et al. Direct evidence for rapid and selective induction of tumor neovascular permeability by tumor necrosis factor and a novel derivative, colloidal gold bound tumor necrosis factor. Int J Cancer 2007; 120: 2474–80.

    CAS  PubMed  Google Scholar 

  108. Menon C, Iyer M, Prabakaran I, Canter RJ, Lehr SC, Fraker DL . TNF-alpha downregulates vascular endothelial Flk-1 expression in human melanoma xenograft model. Am J Physiol Heart Circ Physiol 2003; 284: H317–29.

    CAS  PubMed  Google Scholar 

  109. Rossi CR, Mocellin S, Pilati P, Foletto M, Campana L, Quintieri L, et al. Hyperthermic isolated perfusion with low-dose tumor necrosis factor alpha and doxorubicin for the treatment of limb-threatening soft tissue sarcomas. Ann Surg Oncol 2005; 12: 398–405.

    PubMed  Google Scholar 

  110. Di Filippo F, Garinei R, Anza M, Cavaliere F, Giannarelli D, Cagol PP, et al. Doxorubicin in isolation limb perfusion in the treatment of advanced limb soft tissue sarcoma. J Exp Clin Cancer Res 2003; 22 ( 4 Suppl): 81–7.

    CAS  PubMed  Google Scholar 

  111. van Etten B, de Vries MR, van IMG, Lans TE, Guetens G, Amba-gtsheer G, et al. Degree of tumour vascularity correlates with drug accumulation and tumour response upon TNF-alpha-based isolated hepatic perfusion. Br J Cancer 2003; 88: 314–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Oshiro S, Tsugu H, Komatsu F, Ohnishi H, Ueno Y, Sakamoto S, et al. Evaluation of intratumoral administration of tumor necrosis factor-alpha in patients with malignant glioma. Anticancer Res 2006; 26: 4027–32.

    CAS  PubMed  Google Scholar 

  113. Cornett WR, McCall LM, Petersen RP, Ross MI, Briele HA, Noyes RD, et al. Randomized multicenter trial of hyperthermic isolated limb perfusion with melphalan alone compared with melphalan plus tumor necrosis factor: American College of Surgeons Oncology Group Trial Z0020. J Clin Oncol 2006; 24: 4196–201.

    CAS  PubMed  Google Scholar 

  114. McLoughlin JM, McCarty TM, Cunningham C, Clark V, Senzer N, Nemunaitis J, et al. TNFerade, an adenovector carrying the transgene for human tumor necrosis factor alpha, for patients with advanced solid tumors: surgical experience and long-term follow-up. Ann Surg Oncol 2005; 12: 825–30.

    PubMed  Google Scholar 

  115. Lopez CA, Kimchi ET, Mauceri HJ, Park JO, Mehta N, Murphy KT, et al. Chemoinducible gene therapy: a strategy to enhance doxorubicin antitumor activity. Mol Cancer Ther 2004; 3: 1167–75.

    CAS  PubMed  Google Scholar 

  116. Gupta VK, Park JO, Jaskowiak NT, Mauceri HJ, Seetharam S, Weichselbaum RR, et al. Combined gene therapy and ionizing radiation is a novel approach to treat human esophageal adeno-carcinoma. Ann Surg Oncol 2002; 9: 500–4.

    PubMed  Google Scholar 

  117. Yamini B, Yu X, Pytel P, Galanopoulos N, Rawlani V, Veerapong J, et al. Adenovirally delivered tumor necrosis factor-alpha improves the antiglioma efficacy of concomitant radiation and temozolomide therapy. Clin Cancer Res 2007; 13: 6217–23.

    CAS  PubMed  Google Scholar 

  118. Bickenbach KA, Veerapong J, Shao MY, Mauceri HJ, Posner MC, Kron SJ, et al. Resveratrol is an effective inducer of CArG-driven TNF-alpha gene therapy. Cancer Gene Ther 2008; 15: 133–9.

    CAS  PubMed  Google Scholar 

  119. MacGill RS, Davis TA, Macko J, Mauceri HJ, Weichselbaum RR, King CR . Local gene delivery of tumor necrosis factor alpha can impact primary tumor growth and metastases through a host-mediated response. Clin Exp Metastasis 2007; 24: 521–31.

    CAS  PubMed  Google Scholar 

  120. Murugesan SR, Akiyama M, Einfeld DA, Wickham TJ, King CR . Experimental treatment of ovarian cancers by adenovirus vectors combining receptor targeting and selective expression of tumor necrosis factor. Int J Oncol 2007; 31: 813–22.

    CAS  PubMed  Google Scholar 

  121. Han ZQ, Assenberg M, Liu BL, Wang YB, Simpson G, Thomas S, et al. Development of a second-generation oncolytic Herpes simplex virus expressing TNFalpha for cancer therapy. J Gene Med 2007; 9: 99–106.

    CAS  PubMed  Google Scholar 

  122. Li Q, Li L, Shi W, Jiang X, Xu Y, Gong F, et al. Mechanism of action differences in the antitumor effects of transmembrane and secretory tumor necrosis factor-alpha in vitro and in vivo. Cancer Immunol Immunother 2006; 55: 1470–9.

    CAS  PubMed  Google Scholar 

  123. Lyu MA, Rosenblum MG . The immunocytokine scFv23/TNF sensitizes HER-2/neu-overexpressing SKBR-3 cells to tumor necrosis factor (TNF) via up-regulation of TNF receptor-1. Mol Cancer Ther 2005; 4: 1205–13.

    CAS  PubMed  Google Scholar 

  124. Liu Y, Zhang W, Cheung LH, Niu T, Wu Q, Li C, et al. The antime-lanoma immunocytokine scFvMEL/TNF shows reduced toxicity and potent antitumor activity against human tumor xenografts. Neoplasia 2006; 8: 384–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Christ O, Seiter S, Matzku S, Burger C, Zoller M . Efficacy of local versus systemic application of antibody-cytokine fusion proteins in tumor therapy. Clin Cancer Res 2001; 7: 985–98.

    CAS  PubMed  Google Scholar 

  126. Halin C, Gafner V, Villani ME, Borsi L, Berndt A, Kosmehl H, et al. Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha. Cancer Res 2003; 63: 3202–10.

    CAS  PubMed  Google Scholar 

  127. Larbouret C, Robert B, Linard C, Teulon I, Gourgou S, Bibeau F, et al. Radiocurability by targeting tumor necrosis factor-alpha using a bispecific antibody in carcinoembryonic antigen transgenic mice. Int J Radiat Oncol Biol Phys 2007; 69: 1231–7.

    CAS  PubMed  Google Scholar 

  128. Zarovni N, Monaco L, Corti A . Inhibition of tumor growth by intramuscular injection of cDNA encoding tumor necrosis factor alpha coupled to NGR and RGD tumor-homing peptides. Hum Gene Ther 2004; 15: 373–82.

    CAS  PubMed  Google Scholar 

  129. Sacchi A, Gasparri A, Gallo-Stampino C, Toma S, Curnis F, Corti A . Synergistic antitumor activity of cisplatin, paclitaxel, and gemcitabine with tumor vasculature-targeted tumor necrosis factor-alpha. Clin Cancer Res 2006; 12: 175–82.

    CAS  PubMed  Google Scholar 

  130. Curnis F, Gasparri A, Sacchi A, Longhi R, Corti A . Coupling tumor necrosis factor-alpha with alphaV integrin ligands improves its antineoplastic activity. Cancer Res 2004; 64: 565–71.

    CAS  PubMed  Google Scholar 

  131. Curnis F, Sacchi A, Corti A . Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 2002; 110: 475–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. van Laarhoven HW, Gambarota G, Heerschap A, Lok J, Verhagen I, Corti A, et al. Effects of the tumor vasculature targeting agent NGR-TNF on the tumor microenvironment in murine lymphomas. Invest New Drags 2006; 24: 27–36.

    CAS  Google Scholar 

  133. Sacchi A, Gasparri A, Curnis F, Bellone M, Corti A . Crucial role for interferon gamma in the synergism between tumor vasculature-targeted tumor necrosis factor alpha (NGR-TNF) and doxorubicin. Cancer Res 2004; 64: 7150–5.

    CAS  PubMed  Google Scholar 

  134. Kircheis R, Ostermann E, Wolschek MF, Lichtenberger C, Magin-Lachmann C, Wightman L, et al. Tumor-targeted gene delivery of tumor necrosis factor-alpha induces tumor necrosis and tumor regression without systemic toxicity. Cancer Gene Ther 2002; 9: 673–80.

    CAS  PubMed  Google Scholar 

  135. ten Hagen TL, Seynhaeve AL, van Tiel ST, Ruiter DJ, Eggermont AM . Pegylated liposomal tumor necrosis factor-alpha results in reduced toxicity and synergistic antitumor activity after systemic administration in combination with liposomal doxorubicin (Doxil) in soft tissue sarcoma-bearing rats. Int J Cancer 2002; 97: 115–20.

    CAS  PubMed  Google Scholar 

  136. Kim DW, Andres ML, Miller GM, Cao JD, Green LM, Seynhaeve AL, et al. Immunohistological analysis of immune cell infiltration of a human colon tumor xenograft after treatment with Stealth liposome-encapsulated tumor necrosis factor-alpha and radiation. Int J Oncol 2002; 21: 973–9.

    CAS  PubMed  Google Scholar 

  137. Goel R, Swanlund D, Coad J, Paciotti GF, Bischof JC . TNF-alpha-based accentuation in cryoinjury-dose, delivery, and response. Mol Cancer Ther 2007; 6: 2039–47.

    CAS  PubMed  Google Scholar 

  138. Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, et al. Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-alpha delivery. Mol Cancer Ther 2006; 5: 1014–20.

    CAS  PubMed  Google Scholar 

  139. Kianmanesh A, Hackett NR, Lee JM, Kikuchi T, Korst RJ, Crystal RG . Intratumoral administration of low doses of an adenovirus vector encoding tumor necrosis factor alpha together with naive dendritic cells elicits significant suppression of tumor growth without toxicity. Hum Gene Ther 2001; 12: 2035–49.

    CAS  PubMed  Google Scholar 

  140. Liu Y, Saxena A, Zheng C, Carlsen S, Xiang J . Combined alpha tumor necrosis factor gene therapy and engineered dendritic cell vaccine in combating well-established tumors. J Gene Med 2004; 6: 857–68.

    CAS  PubMed  Google Scholar 

  141. Lu Y, Yamauchi N, Koshita Y, Fujiwara H, Sato Y, Fujii S, et al. Administration of subtumor regression dosage of TNF-alpha to mice with pre-existing parental tumors augments the vaccination effect of TNF gene-modified tumor through the induction of MHC class I molecule. Gene Ther 2001; 8: 499–507.

    CAS  PubMed  Google Scholar 

  142. Chen S, Fribley A, Wang CY . Potentiation of tumor necrosis factor-mediated apoptosis of oral squamous cell carcinoma cells by adenovirus-mediated gene transfer of NF-kappaB inhibitor. J Dent Res 2002; 81: 98–102.

    CAS  PubMed  Google Scholar 

  143. Ye Z, Shi M, Chan T, Sas S, Xu S, Xiang J . Engineered CD8+ cytotoxic T cells with fiber-modified adenovirus-mediated TNF-alpha gene transfection counteract immunosuppressive interleukin-10-secreting lung metastasis and solid tumors. Cancer Gene Ther 2007; 14: 661–75.

    CAS  PubMed  Google Scholar 

  144. Lasek W, Mackiewicz A, Czajka A, Switaj T, Golb J, Wiznerowicz M, et al. Antitumor effects of the combination therapy with TNF-alpha gene-modified tumor cells and interleukin 12 in a melanoma model in mice. Cancer Gene Ther 2000; 7: 1581–90.

    CAS  PubMed  Google Scholar 

  145. Nagy T, Glavinas H, Szincsak N, Hunyadi J, Janossy T, Duda E, et al. Tumor cells expressing membrane-bound tumor necrosis factor activate macrophages and have a compromised growth in immunosuppressed and immunodeficient mice. Cancer Lett 2003; 196: 49–56.

    CAS  PubMed  Google Scholar 

  146. Zimmermann VS, Bondanza A, Monno A, Rovere-Querini P, Corti A, Manfredi AA . TNF-alpha coupled to membrane of apoptotic cells favors the cross-priming to melanoma antigens. J Immunol 2004; 172: 2643–50.

    CAS  PubMed  Google Scholar 

  147. Egberts JH, Cloosters V, Noack A, Schniewind B, Thon L, Klose S, et al. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res 2008; 68: 1443–50.

    CAS  PubMed  Google Scholar 

  148. Madhusudan S, Foster M, Muthuramalingam SR, Braybrooke JP, Wilner S, Kaur K, et al. A phase II study of etanercept (Enbrel), a tumor necrosis factor alpha inhibitor in patients with metastatic breast cancer. Clin Cancer Res 2004; 10: 6528–34.

    CAS  PubMed  Google Scholar 

  149. Madhusudan S, Muthuramalingam SR, Braybrooke JP, Wilner S, Kaur K, Han C, et al. Study of etanercept, a tumor necrosis factor-alpha inhibitor, in recurrent ovarian cancer. J Clin Oncol 2005; 23: 5950–9.

    CAS  PubMed  Google Scholar 

  150. Harrison ML, Obermueller E, Maisey NR, Hoare S, Edmonds K, Li NF, et al. Tumor necrosis factor alpha as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J Clin Oncol 2007; 25: 4542–9.

    CAS  PubMed  Google Scholar 

  151. Stathopoulos GT, Kollintza A, Moschos C, Psallidas I, Sherrill TP, Pitsinos EN, et al. Tumor necrosis factor-alpha promotes malignant pleural effusion. Cancer Res 2007; 67: 9825–34.

    CAS  PubMed  Google Scholar 

  152. Waterston AM, Salway F, Andreakos E, Butler DM, Feldmann M, Coombes RC . TNF auto vaccination induces self anti-TNF antibodies and inhibits metastasis in a murine melanoma model. Br J Cancer 2004; 90: 1279–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Geborek P, Bladstrom A, Turesson C, Gulfe A, Petersson IF, Saxne T, et al. Tumour necrosis factor blockers do not increase overall tumour risk in patients with rheumatoid arthritis, but may be associated with an increased risk of lymphomas. Ann Rheum Dis 2005; 64: 699–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Calzascia T, Pellegrini M, Hall H, Sabbagh L, Ono N, Elford AR, et al. TNF-alpha is critical for antitumor but not antiviral T cell immunity in mice. J Clin Invest 2007; 117: 3833–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, et al. IAP antagonists target cIAPl to induce TNFalpha-dependent apoptosis. Cell 2007; 131: 682–93.

    CAS  PubMed  Google Scholar 

  156. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNF alpha-dependent apoptosis. Cell 2007; 131: 669–81.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratory of Molecular and Translational Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China

    Xia Wang

  2. Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, 87108, New Mexico, USA

    Yong Lin

Authors
  1. Xia Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yong Lin
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yong Lin.

Additional information

This study is partly supported by grants from the National Cancer Institute (R03CA125796, to Yong Lin), and National Natural Science Foundation of China (30772539, to Xia Wang).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, X., Lin, Y. Tumor necrosis factor and cancer, buddies or foes?. Acta Pharmacol Sin 29, 1275–1288 (2008). https://doi.org/10.1111/j.1745-7254.2008.00889.x

Download citation

  • Received: 11 June 2008

  • Accepted: 18 July 2008

  • Issue Date: 01 November 2008

  • DOI: https://doi.org/10.1111/j.1745-7254.2008.00889.x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • TNF
  • apoptosis
  • NF-κB
  • carcinogenesis
  • therapy
  • therapeutics
  • signaling pathways

This article is cited by

  • Investigation of the gut microbiome, bile acid composition and host immunoinflammatory response in a model of azoxymethane-induced colon cancer at discrete timepoints

    • J. M. Keane
    • C. J. Walsh
    • N. P. Hyland

    British Journal of Cancer (2023)

  • Drug repurposing: re-inventing therapies for cancer without re-entering the development pipeline—a review

    • Shafina Siddiqui
    • Ankita Jaywant Deshmukh
    • Jyotirmoi Aich

    Journal of the Egyptian National Cancer Institute (2022)

  • BCL2A1 regulates Canady Helios Cold Plasma-induced cell death in triple-negative breast cancer

    • Saravana R. K. Murthy
    • Xiaoqian Cheng
    • Jerome Canady

    Scientific Reports (2022)

  • Optogenetic-controlled immunotherapeutic designer cells for post-surgical cancer immunotherapy

    • Yuanhuan Yu
    • Xin Wu
    • Haifeng Ye

    Nature Communications (2022)

  • An in silico comparative transcriptome analysis identifying hub lncRNAs and mRNAs in brain metastatic small cell lung cancer (SCLC)

    • Arsham Mikaeili Namini
    • Motahareh Jahangir
    • Abolfazl Movafagh

    Scientific Reports (2022)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open access publishing
  • About the Editors
  • Editorial Board
  • About the Partner
  • Contact
  • For Advertisers
  • Subscribe
  • Announcements

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Acta Pharmacologica Sinica (Acta Pharmacol Sin) ISSN 1745-7254 (online) ISSN 1671-4083 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • Nano
  • Protocol Exchange
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Nature Research Academies
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Career development

  • Nature Careers
  • Nature Conferences
  • Nature events

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Korea
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • California Privacy Statement
Springer Nature

© 2023 Springer Nature Limited