Molecular Pharmacology

Enzymological characterization of FIIa, a fibrinolytic enzyme from Agkistrodon acutus venom

Abstract

Aim:

To study the enzymological characterization of a fibrinolytic enzyme (FIIa) from Agkistrodon acutus venom.

Methods:

The fibrinogenolytic effect and the influences of several protease inhibitors, chelating agents, and metal ions on fibrinogenolytic activity were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The metal content of FIIa was determined by atomic absorption spectroscopy.

Results:

After incubation with FIIa (0.25 g/L), Aα-, Bβ- and γ-chains of fibrinogen disappeared within 5 min, 30 min, and 8 h, respectively. The molecular weights of major degradation products were 45 000 and 41 000, which were different from those bands produced by plasmin. The fibrinogenolytic activity of FIIa was strongly inhibited by ethylenediamine tetraacetic acid (EDTA), ethyleneglycol tetraacetic acid (EGTA), dithiothreitol and cysteine, but not by phenylmethyl-sulfonyl fluoride and soybean trypsin inhibitor. Zinc (3171±25 mg/kg), potassium (489±17 mg/kg) and calcium (319±13 mg/kg) were found in FIIa. Zn2+, Ca2+ and Mg2+ could recover the fibrinogenolytic activity of FIIa, which was inhibited by EDTA. Only Ca2+ could recover the fibrinogenolytic activity inhibited by EGTA.

Conclusion:

FIIa can degrade the Aα-, Bβ- and γ-chains of fibrinogen. FIIa is a metalloproteinase, and Zn2+, Ca2+, and disulfide bonds are necessary for its fibrinogenolytic activity.

References

  1. 1

    Tseng YL, Lee CJ, Huang TF . Effects of a snake venom metalloproteinase, triflamp, on platelet aggregation, platelet-neutrophil and neutrophil-neutrophil interactions: involvement of platelet GPIbα and neutrophil PSGL-1. Thromb Haemost 2004; 91: 315–24.

    CAS  Article  Google Scholar 

  2. 2

    Tatematsu R, Komori Y, Nikai T . A new thrombin-like enzyme, flavoviridiobin from the venom of Trimeresurus flavoviridis (habu). J Nat Toxins 2000; 9: 327–39.

    CAS  PubMed  Google Scholar 

  3. 3

    Zhang Y, Wisner A, Xiong Y, Bon C . A novel plasminogen activator from snake venom. Purification, characterization, and molecular cloning. J Biol Chem 1995; 270: 10 246–55.

    Google Scholar 

  4. 4

    Liang XX, Chen JS, Zhou YN, Qiu PX, Yan GM . Purification and biochemical characterization of FIIa, a fibrinolytic enzyme from Agkistrodon acutus venom. Toxicon 2001; 39: 1133–9.

    CAS  Article  Google Scholar 

  5. 5

    Hahn BS, Chang IM, Kim YS . Purification and characterization of piscivorase I and II, the fibrinolytic enzymes from eastern cottonmouth moccasin venom (Agkistrodon piscivorus). Toxicon 1995; 33: 929–41.

    CAS  Article  Google Scholar 

  6. 6

    Trikha M, Schmitmeier S, Markland FS . Purification and characterization of fibrolase isoforms from venom of individual southern copperhead (Agkistrodon contortrix) snakes. Toxicon 1994; 32: 1521–31.

    CAS  Article  Google Scholar 

  7. 7

    Ouyang C, Hwang LJ, Huang TF . Alpha-fibrinogenase from Agkistrodon rhodostoma (Malayan pit viper) snake venom. Toxicon 1983; 21: 25–33.

    CAS  Article  Google Scholar 

  8. 8

    Maruyama M, Sugiki M, Yoshida E, Shimaya K, Mihara H . Broad substrate specificity of snake venom fibrinolytic enzymes: possible role in haemorrhage. Toxicon 1992; 30: 1387–97.

    CAS  Article  Google Scholar 

  9. 9

    Willis TW, Tu AT . Purification and biochemical characterization of atroxase, a nonhemorrhagic fibrinolytic protease from western diamondback rattlesnake venom. Biochemistry 1988; 27: 4769–77.

    CAS  Article  Google Scholar 

  10. 10

    Hung CC, Huang KF, Chiou SH . Characterization of one novel venom protease with beta-fibrinogenase activity from the Taiwan habu (Trimeresurus mucrosquamatus): purification and cDNA sequence analysis. Biochem Biophys Res Commun 1994; 205: 1707–15.

    CAS  Article  Google Scholar 

  11. 11

    Siigur E, Siigur J . Purification and characterization of lebetase, a fibrinolytic enzyme from Vipera lebetina (snake) venom. Biochim Biophys Acta 1991; 1074: 223–9.

    CAS  Article  Google Scholar 

  12. 12

    Ou-yang C, Huang TF . Purification and characterization of the fibrinolytic principle of Agkistrodon acutus venom. Biochim Biophys Acta 1976; 439: 146–53.

    CAS  Article  Google Scholar 

  13. 13

    Chen JS, Liang XX, Qiu PX, Yan GM . Thrombolysis effect with FIIa from Agkistrodon acutus venom in different thrombosis model. Acta Pharmacol Sin 2001; 22: 420–2.

    CAS  Google Scholar 

  14. 14

    Gasmi A, Chabchoub A, Guermazi S, Karoui H, Elayeb M, Dellagi K . Further characterization and thrombolytic activity in a rat model of fibrinogenase from Vipera Lebetina venom. Thromb Res 1997; 86: 233–42.

    CAS  Article  Google Scholar 

  15. 15

    Pinto AF, Dobrovolski R, Veiga AB, Guimaraes JA . Lonofibrase, a novel α-fibrinogenase from Lonomia obliqua caterpillars. Thromb Res 2004; 113: 147–54.

    CAS  Article  Google Scholar 

  16. 16

    Swenson S, Markland, FS Jr . Snake venom fibrin(ogen)olytic enzymes. Toxicon 2005; 45: 1021–39.

    CAS  Article  Google Scholar 

  17. 17

    Daoud E, Tu AT, el-Asmar MF . Mechanism of the anticoagulant, Cerastase F-4, isolated from Cerastes cerastes (Egyptian sand viper) venom. Thromb Res 1986; 41: 791–9.

    CAS  Article  Google Scholar 

  18. 18

    Gasmi A, Karoui M, Benlasfar Z, Karoui H, el-Ayeb M, Dellagi K . Purification and characterization of a fibrinogenase from Vipera lebetina (desert adder) venom. Toxicon 1991; 29: 827–36.

    CAS  Article  Google Scholar 

  19. 19

    Gatta D, Dong A, Witt J, Tu AT . Biochemical characterization of basilase, a fibrinolytic enzyme from Crotalus basiliscus. Arch Biochem Biophys 1995; 317: 365–73.

    Article  Google Scholar 

  20. 20

    Siigur J, Samel M, Tonismagi K, Subbi J, Siigur E, Tu AT . Biochemical characterization of lebetase, a direct-acting fibrinolytic enzyme from Vipera lebetina snake venom. Thromb Res 1998; 90: 39–49.

    CAS  Article  Google Scholar 

  21. 21

    Gomis-Ruth FX, Kress LF, Bode W . First structure of a snake venom metalloproteinase: a prototype for matrix metalloproteinase/collagenase. EMBO J 1993; 12: 4151–7.

    CAS  Article  Google Scholar 

  22. 22

    Zhang D, Botos I, Gomis-Ruth FX, Doll R, Blood C, Njoroge FG et al. Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin c (from d). Proc Natl Acad Sci USA 1994; 91: 8447–51.

    CAS  Article  Google Scholar 

  23. 23

    Assakura MT, Reichl AP, Asperti MC, Mandelbaum FR . Isolation of the major proteolytic enzyme from the venom of the snake Bothrops moojeni (caissaca). Toxicon 1985; 23: 691–706.

    CAS  Article  Google Scholar 

  24. 24

    De-Camargo-Goncalves LR, Chudzinski-Tavassi AM . High molecular mass kininogen inhibits metalloproteinases of Bothrops jararaca snake venom. Biochem Biophys Res Commun 2004; 318: 53–9.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jia-shu Chen.

Additional information

Project supported by the Guangdong Science and Technology Commission (No 001365).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liang, X., Zhou, Y., Chen, J. et al. Enzymological characterization of FIIa, a fibrinolytic enzyme from Agkistrodon acutus venom. Acta Pharmacol Sin 26, 1474–1478 (2005). https://doi.org/10.1111/j.1745-7254.2005.00204.x

Download citation

Keywords

  • snake venoms
  • Agkistrodon acutus
  • fibrinolysis
  • metalloproteinase

Further reading

Search