Molecular Pharmacology

Novel cyclophilin D inhibitors derived from quinoxaline exhibit highly inhibitory activity against rat mitochondrial swelling and Ca2+ uptake/release

Abstract

Aim:

To investigate methods for identifying specific cyclophilin D (CypD) inhibitors derived from quinoxaline, thus developing possible lead compounds to inhibit mitochondrial permeability transition (MPT) pore opening.

Methods:

Kinetic analysis of the CypD/inhibitor interaction was quantitatively performed by using surface plasmon resonance (SPR) and fluorescence titration (FT) techniques. IC50 values of these inhibitors were determined by PPIase inhibition activity assays.

Results:

All the equilibrium dissociation constants (KD) of the seven compounds binding to CypD were below 10 μmol/L. The IC50 values were all consistent with the SPR and FT results. Compounds GW2, 5, 6, and 7 had high inhibition activities against Ca2+-dependent rat liver mitochondrial swelling and Ca2+ uptake/release. Compound GW5 had binding selectivity for CypD over CypA.

Conclusion:

The agreement between the measured IC50 values and the results of SPR and FT suggests that these methods are appropriate and powerful methods for identifying CypD inhibitors. The compounds we screened using these methods (GW1-7) are reasonable CypD inhibitors. Its potent ability to inhibit mitochondrial swelling and the binding selectivity of GW5 indicates that GW5 could potentially be used for inhibiting MPT pore opening.

References

  1. 1

    Liu X, Kim CN, Yang J, Jemmerson R, Wang X . Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147–57.

    CAS  Article  Google Scholar 

  2. 2

    Susin SA, Lorenzon HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441–6.

    CAS  Article  Google Scholar 

  3. 3

    Olson M, Kornbluth S . Mitochondria in apoptosis and human disease. Curr Mol Med 2001; 1: 91–122.

    CAS  Article  Google Scholar 

  4. 4

    Crompton M . Mitochondria and aging: a role for the permeability transition? Aging Cell 2004; 3: 3–6.

    CAS  Article  Google Scholar 

  5. 5

    Waldmeier PC, Zimmermann K, Qian T, Tintelnot-Blomley M, Lemasters JJ . Cyclophilin D as a drug target. Curr Med Chem 2003; 10: 1485–506.

    CAS  Article  Google Scholar 

  6. 6

    Mattson MP, Kroemer G . Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med 2003; 9: 196–205.

    CAS  Article  Google Scholar 

  7. 7

    Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE . Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 2005; 79: 231–9.

    CAS  Article  Google Scholar 

  8. 8

    Crompton M . On the involvement of mitochondrial intermembrane junctional complexes in apoptosis. Curr Med Chem 2003; 10: 1473–84.

    CAS  Article  Google Scholar 

  9. 9

    Connern CP, Halestrap AP . Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. Biochem J 1992; 284: 381–5.

    CAS  Article  Google Scholar 

  10. 10

    Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX . Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 1989; 337: 476–8.

    CAS  Article  Google Scholar 

  11. 11

    Lin DT, Lechleiter JD . Mitochondrial targeted cyclophilin D protects cells from cell death by peptidyl prolyl isomerization. J Biol Chem 2002; 277: 31134–41.

    CAS  Article  Google Scholar 

  12. 12

    Li Y, Johnson N, Capano M, Edwards M, Crompton M . Cyclophilin-D promotes the mitochondrial permeability transition but has opposite effects on apoptosis and necrosis. Biochem J 2004; 383: 101–9.

    CAS  Article  Google Scholar 

  13. 13

    Schubert A, Grimm S . Cyclophilin D, a component of the permeability transition-pore, is an apoptosis repressor. Cancer Res 2004; 64: 85–93.

    CAS  Article  Google Scholar 

  14. 14

    Machida K, Osada H . Molecular interaction between cyclophilin D and adenine nucleotide translocase in cytochrome c release: does it determine whether cytochrome c release is dependent on permeability transition or not? Ann NY Acad Sci 2003; 1010: 182–5.

    CAS  Article  Google Scholar 

  15. 15

    Crompton M . The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999; 341: 233–49.

    CAS  Article  Google Scholar 

  16. 16

    Halestrap AP, McStay GP, Clarke SJ . The permeability transition pore complex: another view. Biochimie 2002; 84: 153–66.

    CAS  Article  Google Scholar 

  17. 17

    Crompton M, Costi A . Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem 1988; 178: 489–501.

    CAS  Article  Google Scholar 

  18. 18

    Crompton M, Barksby E, Johnson N, Capono M . Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 2002; 84: 143–52.

    CAS  Article  Google Scholar 

  19. 19

    Alaimo RJ [ inventor]. Norwich Eaton Pharmaceuticals [assignee]. Thiocyanatoquinoxaline compounds with immunomodulating activity. US patent 4540693. September 10, 1985.

  20. 20

    Magnus P, Thurston LS . Synthesis of the vinblastine-like antitumor bis-indole alkaloid navelbine analogue desethyldihydronavelbine. J Org Chem 1991; 56: 1166–70.

    CAS  Article  Google Scholar 

  21. 21

    Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning: A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  22. 22

    Luo C, Luo H, Zheng S, Gui C, Yue L, Yu C, et al. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem Biophys Res Commun 2004; 321: 557–65.

    CAS  Article  Google Scholar 

  23. 23

    Husi H, Zurini MGM . Comparative binding studies of cyclophilins to cyclosporin A and derivatives by fluorescence measurement. Anal Biochem 1994; 222: 251–5.

    CAS  Article  Google Scholar 

  24. 24

    Handschumacher RE, Harding MW, Rice J, Drugge RJ . Cyclophilin A: a specific cytosolic binding protein for cyclosporin A. Science 1984; 226: 544–7.

    CAS  Article  Google Scholar 

  25. 25

    Kofron JL, Kuzmic P, Kishore V, Colon-Bonilla E, Rich DH . Determination of kinetic constants for peptidyl prolyl cis-trans isomerases by an improved spectrophotometric assay. Biochemistry 1991; 30: 6127–34.

    CAS  Article  Google Scholar 

  26. 26

    Blattner JR, He L, Lemasters JJ . Screening assays for the mitochondrial permeability transition using a fluorescence multiwell plate reader. Anal Biochem 2001; 295: 220–6.

    CAS  Article  Google Scholar 

  27. 27

    Lowry OH, Rosenbrough NH, Farr AL, Randall JR . Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265–75.

    CAS  Google Scholar 

  28. 28

    Thompson J, Higgins D, Gibson T . CLUSTAL_W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–80.

    CAS  Article  Google Scholar 

  29. 29

    Gamble T, Vajdos F, Yoo S, Worthylake D, Houseweart M, Sundquist WI, et al. Crystal structure of human cyclophilin a bound to the amino-terminal domain of HIV-1 capsid. Cell 1996; 87: 1285–94.

    CAS  Article  Google Scholar 

  30. 30

    Vajdos F, Yoo S, Houseweart M, Sundquist W, Hill C . Crystal structure of cyclophilin a complexed with a binding site peptide from the HIV-1 capsid protein. Protein Sci 1997; 6: 2297–307.

    CAS  Article  Google Scholar 

  31. 31

    Sedrani R, Kallen J, Martin Cabrejas L, Papageorious C, Senia F, Rohrbach S, et al. Sanglifehrin-cyclophilin interaction: degradation work, synthetic macrocyclic analogues, x-ray crystal structure and binding data. J Am Chem Soc 2003; 125: 3849–59.

    CAS  Article  Google Scholar 

  32. 32

    Sali A, Blundell T . Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993; 234: 779–815.

    CAS  Article  Google Scholar 

  33. 33

    Insight II [molecular modeling package]. San Diego, California, the United States: Molecular Simulations; 2000.

  34. 34

    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, et al. A Second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995; 117: 5179–97.

    CAS  Article  Google Scholar 

  35. 35

    Bowie JU, Luthy R, Eisenberg D . A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991; 253: 164–70.

    CAS  Article  Google Scholar 

  36. 36

    Sybyl [molecular modeling package]. St Louis, MO: Tripos Associates; 2000.

  37. 37

    Ewing T, Kuntz ID . Critical evaluation of search algorithms for automated molecular docking and database screening. J Comput Chem 1997; 18: 1175–89.

    CAS  Article  Google Scholar 

  38. 38

    Huber W, Persicace S, Kohler J, Muller F, Schlatter D . SPR-based interaction studies with small molecular weight ligands using hAGT fusion proteins. Anal Biochem 2004; 333: 280–8.

    CAS  Article  Google Scholar 

  39. 39

    Kallen J, Spitzfaden C, Zurini MGM, Wider G, Widmer H, Wuthrich K, et al. Structure of human cyclophilin and its binding site for cyclosporin A determined by X-ray crystallography and NMR spectroscopy. Nature 1991; 353: 276–9.

    CAS  Article  Google Scholar 

  40. 40

    Pfluefel G, Kallen J, Schirmer T, Jansonius JN, Zurini MGM, Walkinshaw MD, et al. X-ray structure of a decameric cyclophilin-cyclosporin crystal complex. Nature 1993; 361: 9–4.

    Article  Google Scholar 

  41. 41

    Fischer G, Berger E, Bang H . Kinetic β-deuterium isotope effects suggest a covalent mechanism for the protein folding enzyme peptidylprolyl cis/trans-isomerase. FEBS Lett 1989; 250: 267–70.

    CAS  Article  Google Scholar 

  42. 42

    Helekar S, Patrick J . Peptidyl prolyl cis-trans isomerase activity of cyclophilin A in functional homo-oligomeric receptor expression. Proc Natl Acad Sci USA 1997; 94: 5432–7.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xu Shen or Hua-liang Jiang.

Additional information

Project supported by the State Key Program for Basic Research of China (No 2004CB-518905), the National High Technology Research and Development Program of China (No 2002AA33011 and 2005AA235030), the National Natural Science Foundation of China (No 20372069 and 20472095), and the Shanghai Basic Research Project from the Shanghai Science and Technology Commission (No 03DZ19212 and 03DZ19228).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guo, Hx., Wang, F., Yu, Kq. et al. Novel cyclophilin D inhibitors derived from quinoxaline exhibit highly inhibitory activity against rat mitochondrial swelling and Ca2+ uptake/release. Acta Pharmacol Sin 26, 1201–1211 (2005). https://doi.org/10.1111/j.1745-7254.2005.00189.x

Download citation

Keywords

  • cyclophilin
  • quinoxalines
  • surface plasmon resonance
  • mitochondrial permeability transition
  • fluorescence titration
  • inhibitor

Further reading

Search

Quick links