Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Relationship between indoor, outdoor, and personal fine particle concentrations for individuals with COPD and predictors of indoor-outdoor ratio in Mexico city

Abstract

Personal exposure and indoor and outdoor exposure to PM10 and PM2.5 of 38 individuals with chronic obstructive pulmonary disease (COPD) was characterized from February through November 2000. All participants lived in Mexico City and were selected based on their area of residence southeast (n=15), downtown (n=15), and southwest (n=8). Participants were monitored at home using personal PM2.5 monitoring devices. Indoor and outdoor levels of PM10 and PM2.5 were measured using MiniVol samplers. Concurrent individual exposure measurements, indoor and outdoor levels of PM2.5, which averaged 38.4 (SD 21.4), 30.6 (SD 15.8), and 30.5 μg/m3 (SD 19.4), respectively. Indoor PM2.5 concentrations explained 40% of the variability of personal exposure. In addition, the factors that most affected personal exposure were regular indoor contact with animals, mold, cooking activities, and aerosol use, indicating that internal sources may largely affect individual exposure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abt E., Suh H.H., Allen G., and Koutrakis P. Characterization of indoor particle sources: a study conducted in the metropolitan Boston area. Environ Health Perspect (2000): 108 (1): 35–44.

    Article  CAS  Google Scholar 

  • Anderson H.R., Bremner S.A., Atkinson R.W., Harrison R.M., and Walters S. Particulate matter and daily mortality and hospital admissions in the west midlands conurbation of the United Kingdom: associations with fine and coarse particles, black smoke and sulphate. Occup Environ Med (2001): 58 (8): 504–510.

    Article  CAS  Google Scholar 

  • Borja-Aburto V.H., Castillejos M., Gold D.R., Bierzwinski S., and Loomis D. Motality and ambient fine particles in southwest México City, 1993–1995. Environ Health Perspect (1998): 106 (12): 849–855.

    Article  CAS  Google Scholar 

  • Borja-Aburto V.H., Loomis D.P., Bangdiwala S.I., Shy C.M., and Rascon-Pacheco R.A. Ozone, suspended particulates, and daily mortality in Mexico City. Am J Epidemiol (1997): 1 145(3): 258–268.

    Article  Google Scholar 

  • Castillejos M., Gold D.R., Dockery D., Tosteson T., Baum T., and Speizer F.E. Effects of ambient ozone on respiratory function and symptoms in Mexico City schoolchildren. Am Rev Respir Dis (1992): 145 (2/1): 276–282.

    Article  CAS  Google Scholar 

  • Castillejos M., Gold D.R., Damokosh A.I., Serrano P., Allen G., McDonnell W.F., Dockery D., Ruiz Velazsco S., Hernandez M., and Hayes C. Acute effects of ozone on the pulmonary function of exercising schoolchildren from Mexico City. Am J Respir Crit Care Med (1995): 152 (5/1): 1501–1507.

    Article  CAS  Google Scholar 

  • Chang L.T., Koutrakis P., Catalano P.J., and Suh H.H. Assessing the importance of different exposure metrics and time–activity data to predict 24-H personal PM2.5 exposures. Toxicol Environ Health A (2003): 66 (16–19): 1825–1846.

    Article  CAS  Google Scholar 

  • Chow J., Watson J., Sylvia A., Edgerton S.A., and Vega E. Spatial differences in outdoor PM10 mass and aerosol composition in Mexico City. J Air Waste Manag Assoc (2002): 52: 423–434.

    Article  Google Scholar 

  • Clayton C.A., Perritt R.L., Pellizzari D.E., Thomas K.W., Whitmore R.W., Wallace L.A., Ozkaynak H., and Spengler J.D. Particle Total Exposure Assessment Methodology (PTEAM) study: distributions of aerosol and elemental concentrations in personal, indoor, and outdoor air samples in Southern California community. J Exposure Anal Environ Epidemiol (1993): 3 (2): 227–250.

    CAS  Google Scholar 

  • Dockery D.W., and Spengler L.D. Personal exposure to respirable particulates and sulfates. J Air pollut Assoc (1981): 31 (2): 153–159.

    Article  CAS  Google Scholar 

  • EPA Environmental Protection Agency. National ambient air quality standards for particulate matter; final rules. Fed Regist USA (1997): 62 (138): 38651–38701.

    Google Scholar 

  • Gauvin S., Reungoat P., Cassadou S., Déchenaux J., Momas I., Just J., and Zmirou D. Contribution of indoor and outdoor environments to PM2.5 personal exposure of children – VESTA study. Sci Total Environ (2002): 297: 175–181.

    Article  CAS  Google Scholar 

  • GOLD. Global initiative for chronic obstructive lung disease guidelines for chronic obstructive pulmonary disease. Federico P. Gómez. and Roberto Rodríguez-Roisini. Curr Opin Pulmon Med USA (2002): 8: 81–86.

    Article  Google Scholar 

  • Holguin-Molina F., Tellez-Rojo M.M., Hernandez-Avila M., Cortez-Lugo M., Chow C.J., Watson G.J., Mannino D., and Romieu I. Air pollution and heart rate variability among the elderly in Mexico City. Epidemiology (2003): 14 (5): 521–527.

    Article  Google Scholar 

  • Hosein R., Corey P., and Silverman F. Predictive models based on personal, indoor and outdoor air pollution exposure. Indoor Air (1991): 4: 457–464.

    Article  Google Scholar 

  • Ilabaca M., Olaeta I., Campos E., Villaire J., Tellez-Rojo M.M., and Romieu I. Association between levels of fine particulate and emergency visits fos pneumonia and other respiratory illnesses among children in Santiago, Chile. J Air Waste Manag Assoc (1999): 49 (9): 154–163.

    Article  CAS  Google Scholar 

  • Janssen N.A., Hoek G., Brunekreef B., Harssema H., Mensink I., and Zuidhof A. Personal sampling of particles in adults: relation among personal, indoor, and outdoor air concentrations. Am J Epidemiol (1998): 147: 537–547.

    Article  CAS  Google Scholar 

  • Koistinen K.J., Edwards R.D., Mathys P., Ruuskanen J., Kunzli N., and Jantunen M.J. Sources of fine particles matter in personal exposure and residential indoor, residential outdoor and workplace microenvironments in the Helsinki phase of the EXPOLIS study. Scand J Work Environ Health (2004): 30 (2): 36–46.

    CAS  Google Scholar 

  • Laden F., Neas L.M., Dockery D.W., and Schwartz J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect (2000): 108 (10): 94–97.

    Article  Google Scholar 

  • Lippman M., Ito K., Nadas A., and Burnett R.T. Association of particulate matter components with daily mortality and morbidity in urban populations. Res Rep Health Eff Ins (2000): 95: 5–72, discussion 73–82.

    Google Scholar 

  • Loomis D., and Kromhout H. Exposure variability concepts and applications in occupational epidemiology. Am J Ind Med (2004): 45 (1): 113–122.

    Article  CAS  Google Scholar 

  • Loomis D., Castillejos M., Gold D.R., McDonnell W., and Borja-Aburto V.H. Air pollution and infant mortality in Mexico City. Epidemiology (1999): 10 (2): 118–123.

    Article  CAS  Google Scholar 

  • Loomis D.P., Borja-Aburto V.H., Bangdiwala S.I., and Shy C.M. Ozone exposure and daily mortality in México City: a time-series analysis. Res Rep Health Eff Inst (1996): 75: 1–37 ; discussion 39–45.

    Google Scholar 

  • NOM-025-SSA1-1993 Norma Oficial Mexicana. La concentración de PM10 como contaminantes atmosféricos no deben rebasar el límite permisible de 150 μg/m3 en 24 horas una vez al año y 50 μg/m3 en una media aritmética anual para protección a la salud de la población susceptible, 1993 México D.F.

  • Olaiz Fernández G. Contaminación Atmosférica y Enfermedad Respiratoria en escolares de la Ciudad de México. Consejo de Estudios para la Restauración y Valoración Ambiental, Misc: México D.F. 1998 pp. 293–300.

  • Ott Wr. Total human exposure: basic concepts, EPA field studies, and future research needs. J Air Waste Manag Assoc (1990): 40 (7): 966–975.

    Article  CAS  Google Scholar 

  • Panella M., Binotti M., Tommasini V., Manazza S., and Palin L. Study of the association between air pollution and hospital admissions for respiratory diseases in the city of Novara. Ann Ig (2000): 12 (1): 41–49.

    CAS  PubMed  Google Scholar 

  • Meng Q.Y., Turpin B.J., Korn L., Weisel C.P., Morandi M., Colome S., Zhang J., Stock T., Spektor D., Winer A., Zhang L., Lee J.H., Giovanetti R., Cui W., Know J., Alimokhtari S., Shendell D., Jones J., Farrar C., and Maberti S. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data. J Exposure Anal Environ Epidemiol (2005): 15: 17–28.

    Article  CAS  Google Scholar 

  • Rojas-Bracho L., Suh H.H., and Koutrakis P. Relationship among personal, indoor, and outdoor fine and coarse particle concentrations for individuals with COPD. J Exposure Anal Environ Epidemiol (2000): 10: 294–306.

    Article  CAS  Google Scholar 

  • Rojas-Bracho L., Suh H.H., Catalano P.J., and Koutrakis P. Personal exposures to particles and their relationships with personal activities for chronic obstructive pulmonary disease patients living in Boston. J Air Waste Manag Assoc (2004): 54 (2): 207–217.

    Article  Google Scholar 

  • Romieu I., Famet J., Smith K., and Bruce N. Outdoor air pollution and acute respiratory infections among children in developing countries. Occup Environ Med (2002a): 44: 640–649.

    Article  Google Scholar 

  • Romieu I. Epidemiological studies of health effects arising from motor vehicle air pollution. In: Schwela D. and Zali O. (Eds.) Urban Traffic Pollution. E & FN Spon, London, (1999) pp. 9–69.

    Google Scholar 

  • Romieu I., Meneses F., Ruiz S., Huerta J., Sienra J.J., White M., Etzel R., and Hernandez M. Effects of intermittent ozone exposure on peak expiratory flow and respiratory symptoms among asthmatic children in Mexico City. Arch Environ Health (1997): 52 (5): 368–376.

    Article  CAS  Google Scholar 

  • Romieu I., Meneses F., Ruiz S., Sienra J.J., Huerta J., White M., and Etzel R.A. Effects of air pollution on the respiratory health of asthmatic children living in México City. Am J Respir Crit Care Med (1996): 154 (2/1): 300–307.

    Article  CAS  Google Scholar 

  • Romieu I., Sienra-Monge J.J., Ramírez-Aguilar M., Téllez-Rojo M.M., Moreno-Macias H., Reyes-Ruiz N.I., del Rio-Navarro B.E., Ruiz-Navarro M.X., Hatch G., Slade R., and Hernández-Avila M. Antioxidant supplementation and lung function among children with asthma exposed to high levels of air pollutants. Am J Respir Crit Care Med (2002b): 166 (5): 703–709.

    Article  Google Scholar 

  • Sarnat J.A., Schwartz J., and Suh H.H. Fine particulate air pollution and mortality ion 20 U.S. cities. N Engl J Med (2001): 19 344(16): 1253–1254.

    Google Scholar 

  • Spengler J.D., Dockery D.W., Turner W.A., Wolfson J.M., and Ferris Jr B.G. Long-term measurements of respirable sulfates and particles inside and outside homes. Atmos Environ (1981): 15: 23–30.

    Article  CAS  Google Scholar 

  • Suh H.H., Nishioka Y., Allen G.A., Koutrakis P., and Burton R.M. The metropolitan acid aerosol characterization study: results from the summer 1994 Washington, D.C. field study. Environ Health Perspect (1997): 105 (8): 826–834.

    Article  CAS  Google Scholar 

  • Sunyer J., Schwartz J., Tobias A., Macfarlane D., Garcia J., and Anto J.M. Patients with chronic obstructive pulmonary disease are at increased risk of death associated with urban particle air pollution: a case-crossover analysis. Am J Epidemiol (2000): 151 (1): 50–56.

    Article  CAS  Google Scholar 

  • Tellez-Rojo M.M., Romieu I., Polo-Peña M., Ruiz-Velasco S., Meneses-Gonzalez F., and Hernandez-Avila M. Effect of environmental pollution on medical visits for respiratory infections in children in Mexico City. Salud Publica Mex (1997): 39 (6): 513–522.

    Article  CAS  Google Scholar 

  • Thomas K.W., Pellizzari E.D., Clayton C.A., Whitaker D.A., Shores R.C., Spengler J., Ozkaynak H., Froehlich S.E., and Wallace L.A. Particle Total Exposure Assessment Methodology (PTEAM) 1990 study: method performance and data quality for personal, indoor, and outdoor monitoring. J Expo Anal Environ Epidemiol (1993): 3 (2): 203–226.

    CAS  PubMed  Google Scholar 

  • Utell M.J., and Frampton M.W. Acute health effects of ambient air pollution: the ultrafine particle hypothesis. J Aerosol Med (2000): 13 (4): 355–359.

    Article  CAS  Google Scholar 

  • Vajanapoom N., Shy C.M., Neas L.M., and Loomis D. Associations of particulate matter and daily mortality in Bangkok, Thailand. Southeast Asian. J Trop Med Public Health (2002): 33 (2): 389–399.

    CAS  Google Scholar 

  • Wallace L.A., and Williams R. Use of personal–indoor–outdoor sulfur concentrations to estimate the infiltration factor and outdoor exposure factor for individual homes and persons. Environ Sci Technol (2005): 15 39(6): 1704–1714.

    Google Scholar 

  • Wallace L.A., Emmerich S.J., and Woward-Reed C. Source strengths of ultrafine and fine particles due to cooking with a gas stove. Environ Sci Technol (2004): 15 38(8): 2304–2311.

    Article  Google Scholar 

  • Wallace L.A., Mitchell H., O'Connor G.T., Neas L., Lippmann M., Kattan M., Koenig J., Stout J.W., Vaughn B.J., Wallace D., Walter M., Adams K., and Liu L.J. Inner-City Asthma Study Particle concentrations in inner-city homes of children with asthma: the effect of smoking cooking, outdoor pollution. Environ Health Perspect 111 (9): 1265–1272.

Download references

Acknowledgements

This study was supported by the Consejo Nacional de Ciencia y Tecnologia (CONACyT), Grant number 212270-5-29198-M, and by the Pan American Health Organization (PAHO), Grant number HDP/HDR/HEP/FEL/MEX/1496D. Filter analysis was kindly carried out by Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA). We are indebted to the Mexico City General Direction for Environmental Monitoring and for all the data given to us from the automatic network system (RAMA) reading service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Romieu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortez-Lugo, M., Moreno-Macias, H., Holguin-Molina, F. et al. Relationship between indoor, outdoor, and personal fine particle concentrations for individuals with COPD and predictors of indoor-outdoor ratio in Mexico city. J Expo Sci Environ Epidemiol 18, 109–115 (2008). https://doi.org/10.1038/sj.jes.7500557

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jes.7500557

Keywords

This article is cited by

Search

Quick links