Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bone ultrasound velocity in small- versus appropriate-for-gestational age preterm infants

Abstract

Objective:

To compare bone status of small-for-gestational age (SGA) versus appropriate-for-gestational age (AGA) newborn preterm infants.

Study design:

Tibial speed of sound (SOS) was measured in 144 infants categorized as SGA or AGA using the reference tables of Lubchenco et al. and Alexander et al.

Results:

By the Lubchenco tables, 22% of infants were SGA and 75% were AGA. The mean gestational ages of SGA and AGA were similar (33.3±2.6 and 32.5±2.4 weeks, respectively, P=0.09); however, SGA infant birth weights were lower (1329±392 and 1829±481 g, respectively, P<0.001). SOS values were higher for SGA versus AGA infants (3098±135 and 3003±122 m/s, respectively. P<0.001). Use of the Alexander tables yielded a twofold increase in the percent of infants categorized as SGA; SOS values remained significantly greater for SGA infants (P<0.001).

Conclusion:

Higher tibial SOS values in SGA versus AGA infants indicate greater bone strength.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Resnik R, Creasy R . Intrauterine growth restriction. In: Creasy R, Resnik R (eds). Maternal–Fetal Medicine, 5th edn. Saunders: Philadelphia, PA, 2004 pp 495–512.

    Google Scholar 

  2. Hediger ML, Overpeck MD, Maurer KR, Kuczmarski RJ, McGlynn A, Davis WW . Growth of infants and young children born small or large for gestational age: findings from the Third National Health and Nutrition Examination Survey. Arch Pediatr Adolesc Med 1998; 152: 1225–1231.

    Article  CAS  PubMed  Google Scholar 

  3. Hack M, Schluchter M, Cartar L, Rahman M, Cuttler L, Borawski E . Growth of very low birth weight infants to age 20 years. Pediatrics 2003; 112: e30–e38.

    Article  PubMed  Google Scholar 

  4. Dalziel SR, Fenwick S, Cundy T, Parag V, Beck TJ, Rodgers A et al. Peak bone mass after exposure to antenatal betamethasone and prematurity: follow-up of a randomized controlled trial. J Bone Miner Res 2006; 21: 1175–1186.

    Article  CAS  PubMed  Google Scholar 

  5. Szathmari M, Vasarhelyi B, Szabo M, Szabo A, Reusz GS, Tulassay T . Higher osteocalcin levels and cross-links excretion in young men born with low birth weight. Calcif Tissue Int 2000; 67: 429–433.

    Article  CAS  PubMed  Google Scholar 

  6. Specker BL, Schoenau E . Quantitative bone analysis in children: current methods and recommendations. J Pediatr 2005; 146: 726–731.

    Article  PubMed  Google Scholar 

  7. Mimouni FB, Littner Y . Bone mass evaluation in children – comparison between methods. Pediatr Endocrinol Rev 2004; 1: 320–330.

    PubMed  Google Scholar 

  8. Njeh CF, Fuerst T, Diessel E, Genant HK . Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int 2001; 12: 1–15.

    CAS  PubMed  Google Scholar 

  9. Marin F, Gonzalez-Macias J, Diez-Perez A, Palma S, Delgado-Rodriguez M . Relationship between bone quantitative ultrasound and fractures: a meta-analysis. J Bone Miner Res 2006; 21: 1126–1135.

    Article  PubMed  Google Scholar 

  10. Pluskiewicz W, Halaba Z . Quantitative bone analysis in children: current methods and recommendations. J Pediatr 2006; 149: 430–431, author reply 431–432.

    Article  PubMed  Google Scholar 

  11. Baroncelli GI . Quantitative bone analysis in children: current methods and recommendations. J Pediatr 2006; 148: 704 author reply 704.

    Article  PubMed  Google Scholar 

  12. Zadik Z . Quantitative bone analysis in children: current methods and recommendations. J Pediatr 2006; 149: 429–430.

    Article  PubMed  Google Scholar 

  13. Kurl S, Heinonen K, Lansimies E . Effects of prematurity, intrauterine growth status, and early dexamethasone treatment on postnatal bone mineralisation. Arch Dis Child Fetal Neonatal Ed 2000; 83: F109–F111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Teitelbaum JE, Rodriguez RJ, Ashmeade TL, Yaniv I, Osuntokun BO, Hudome S et al. Quantitative ultrasound in the evaluation of bone status in premature and full-term infants. J Clin Densitom 2006; 9: 358–362.

    Article  PubMed  Google Scholar 

  15. Koo WW, Walters J, Bush AJ, Chesney RW, Carlson SE . Dual-energy X-ray absorptiometry studies of bone mineral status in newborn infants. J Bone Miner Res 1996; 11: 997–1002.

    Article  CAS  PubMed  Google Scholar 

  16. Koo WW, Hockman EM . Physiologic predictors of lumbar spine bone mass in neonates. Pediatr Res 2000; 48: 485–489.

    Article  CAS  PubMed  Google Scholar 

  17. Tsukahara H, Sudo M, Umezaki M, Fujii Y, Kuriyama M, Yamamoto K et al. Measurement of lumbar spinal bone mineral density in preterm infants by dual-energy X-ray absorptiometry. Biol Neonate 1993; 64: 96–103.

    Article  CAS  PubMed  Google Scholar 

  18. Liao XP, Zhang WL, He J, Sun JH, Huang P . Bone measurements of infants in the first 3 months of life by quantitative ultrasound: the influence of gestational age, season, and postnatal age. Pediatr Radiol 2005; 35: 847–853.

    Article  PubMed  Google Scholar 

  19. Nemet D, Dolfin T, Wolach B, Eliakim A . Quantitative ultrasound measurements of bone speed of sound in premature infants. Eur J Pediatr 2001; 160: 736–740.

    Article  CAS  PubMed  Google Scholar 

  20. Pereda L, Ashmeade T, Zaritt J, Carver JD . The use of quantitative ultrasound in assessing bone status in newborn preterm infants. J Perinatol 2003; 23: 655–659.

    Article  PubMed  Google Scholar 

  21. Ashmeade T, Pereda L, Chen M, Carver JD . Longitudinal measurements of bone status in preterm infants. J Pediatr Endocrinol Metab 2007; 20: 415–424.

    Article  PubMed  Google Scholar 

  22. Chen JY, Ling UP, Chiang WL, Liu CB, Chanlai SP . Total body bone mineral content in small-for-gestational-age, appropriate-for-gestational-age, large-for-gestational-age term infants and appropriate-for-gestational-age preterm infants. Zhonghua Yi Xue Za Zhi (Taipei) 1995; 56: 109–114.

    CAS  Google Scholar 

  23. Lapillonne A, Braillon P, Claris O, Chatelain PG, Delmas PD, Salle BL . Body composition in appropriate and in small for gestational age infants. Acta Paediatr 1997; 86: 196–200.

    Article  CAS  PubMed  Google Scholar 

  24. Namgung R, Tsang RC, Specker BL, Sierra RI, Ho ML . Reduced serum osteocalcin and 1,25-dihydroxyvitamin D concentrations and low bone mineral content in small for gestational age infants: evidence of decreased bone formation rates. J Pediatr 1993; 122: 269–275.

    Article  CAS  PubMed  Google Scholar 

  25. Petersen S, Gotfredsen A, Knudsen FU . Total body bone mineral in light-for-gestational-age infants and appropriate-for-gestational-age infants. Acta Paediatr Scand 1989; 78: 347–350.

    Article  CAS  PubMed  Google Scholar 

  26. Pohlandt F, Mathers N . Bone mineral content of appropriate and light for gestational age preterm and term newborn infants. Acta Paediatr Scand 1989; 78: 835–839.

    Article  CAS  PubMed  Google Scholar 

  27. Minton SD, Steichen JJ, Tsang RC . Decreased bone mineral content in small-for-gestational-age infants compared with appropriate-for-gestational-age infants: normal serum 25-hydroxyvitamin D and decreasing parathyroid hormone. Pediatrics 1983; 71: 383–388.

    CAS  PubMed  Google Scholar 

  28. Chunga Vega F, Gomez de Tejada MJ, Gonzalez Hachero J, Perez Cano R, Coronel Rodriguez C . Low bone mineral density in small for gestational age infants: correlation with cord blood zinc concentrations. Arch Dis Child Fetal Neonatal Ed 1996; 75: F126–F129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Littner Y, Mandel D, Mimouni FB, Dollberg S . Bone ultrasound velocity of infants born small for gestational age. J Pediatr Endocrinol Metab 2005; 18: 793–797.

    Article  PubMed  Google Scholar 

  30. Littner Y, Mandel D, Mimouni FB, Dollberg S . Decreased bone ultrasound velocity in large-for-gestational-age infants. J Perinatol 2004; 24: 21–23.

    Article  PubMed  Google Scholar 

  31. Regev RH, Dolfin T, Eliakim A, Arnon S, Bauer S, Nemet D et al. Bone speed of sound in infants of mothers with gestational diabetes mellitus. J Pediatr Endocrinol Metab 2004; 17: 1083–1088.

    Article  PubMed  Google Scholar 

  32. Lubchenco LO, Hansman C, Dressler M, Boyd E . Intrauterine growth as estimated from liveborn birth-weight data at 24 to 42 weeks of gestation. Pediatrics 1963; 32: 793–800.

    CAS  PubMed  Google Scholar 

  33. Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M . A United States national reference for fetal growth. Obstet Gynecol 1996; 87: 163–168.

    Article  CAS  PubMed  Google Scholar 

  34. Eliakim A, Dolfin T, Weiss E, Shainkin-Kestenbaum R, Lis M, Nemet D . The effects of exercise on body weight and circulating leptin in premature infants. J Perinatol 2002; 22: 550–554.

    Article  PubMed  Google Scholar 

  35. Litmanovitz I, Dolfin T, Friedland O, Arnon S, Regev R, Shainkin-Kestenbaum R et al. Early physical activity intervention prevents decrease of bone strength in very low birth weight infants. Pediatrics 2003; 112: 15–19.

    Article  PubMed  Google Scholar 

  36. Moyer-Mileur L, Luetkemeier M, Boomer L, Chan GM . Effect of physical activity on bone mineralization in premature infants. J Pediatr 1995; 127: 620–625.

    Article  CAS  PubMed  Google Scholar 

  37. Palacios J, Rodriguez S, Rodriguez JI . Intra-uterine long bone growth in small-for-gestational-age infants. Eur J Pediatr 1992; 151: 304–307.

    Article  CAS  PubMed  Google Scholar 

  38. Harrast SD, Kalkwarf HJ . Effects of gestational age, maternal diabetes, and intrauterine growth retardation on markers of fetal bone turnover in amniotic fluid. Calcif Tissue Int 1998; 62: 205–208.

    Article  CAS  PubMed  Google Scholar 

  39. Namgung R, Tsang RC . Bone in the pregnant mother and newborn at birth. Clin Chim Acta 2003; 333: 1–11.

    Article  CAS  PubMed  Google Scholar 

  40. Sievanen H, Backstrom MC, Kuusela AL, Ikonen RS, Maki M . Dual energy x-ray absorptiometry of the forearm in preterm and term infants: evaluation of the methodology. Pediatr Res 1999; 45: 100–105.

    Article  CAS  PubMed  Google Scholar 

  41. Prevrhal S, Fuerst T, Fan B, Njeh C, Hans D, Uffmann M et al. Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos Int 2001; 12: 28–34.

    Article  CAS  PubMed  Google Scholar 

  42. Fricke O, Tutlewski B, Schwahn B, Schoenau E . Speed of sound: relation to geometric characteristics of bone in children, adolescents, and adults. J Pediatr 2005; 146: 764–768.

    Article  PubMed  Google Scholar 

  43. Rodrigues T, Teles TP, Miguel C, Pereira A, Barros H . [Small for gestational age newborn infants. The effect of standard curves of birth weight on the calculation of the prevalence and of the risk factors]. Acta Med Port 1996; 9: 335–340.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Carver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Ashmeade, T. & Carver, J. Bone ultrasound velocity in small- versus appropriate-for-gestational age preterm infants. J Perinatol 27, 485–489 (2007). https://doi.org/10.1038/sj.jp.7211769

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jp.7211769

Keywords

This article is cited by

Search

Quick links