Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Effects of Inhaled Nitric Oxide on Pulmonary and Cardiac Function in Preterm Infants with Evolving Bronchopulmonary Dysplasia

Abstract

BACKGROUND: Inhaled nitric oxide (iNO) reduces pulmonary vascular resistance by preferential vasodilation in ventilated lung units. In experimental animals, iNO also reduces airway resistance by smooth muscle relaxation. Hence, there may be a therapeutic role for iNO in evolving bronchopulmonary dysplasia (BPD).

OBJECTIVE: To evaluate the acute effects of low-dose iNO on lung mechanics, ventilation distribution, oxygenation, and cardiac function in preterm infants with evolving BPD.

METHODS: Measurements of lung compliance (CL), airway resistance (RL), ventilation-distribution (N2 clearance in multiple-breath washout), oxygenation (SpO2), left ventricular ejection fraction (LVEF) and right ventricular shortening fraction were obtained before and during 2 hours of iNO (10 ppm) in a group of ventilated preterm infants with evolving BPD.

RESULTS: A total of 13 preterm infants with (mean±SD) BW: 663.8±116 g, GA: 24.9±1.2 weeks, age: 32±14 days, mean airway pressure: 6.7±0.9 cmH2O and fraction of inspired oxygen: 0.35±0.06 were studied. iNO did not affect CL, RL or N2 clearance. There was a small increase in LVEF. Mean SpO2 remained unchanged, but the duration of spontaneous hypoxemic episodes increased during iNO.

CONCLUSION: Low-dose iNO had no acute effects on lung function, cardiac function and oxygenation in evolving BPD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gerhardt T, Hehre D, Feller R, Reifenberg L, Bancalari E . Serial determination of pulmonary function in infants with chronic lung disease. J Pediatr 1987;110:448–456.

    Article  CAS  Google Scholar 

  2. Motoyama E, Fort M, Klesh K, Mutich R, Guthrie R . Early onset of airway reactivity in premature infants with bronchopulmonary dysplasia. Am Rev Resp Dis 1987;136:50–57.

    Article  CAS  Google Scholar 

  3. Goodman G, Perkin R, Anas N, Sperling D, Hicks D, Rowen M . Pulmonary hypertension in infants with bronchopulmonary dysplasia. J Pediatr 1988;112:67–72.

    Article  CAS  Google Scholar 

  4. Gill A, Weindling A . Pulmonary artery pressure changes in the very low birthweight infant developing chronic lung disease. Arch Dis Child 1993;68:303–307.

    Article  CAS  Google Scholar 

  5. Finer N, Barrington K . Nitric oxide in respiratory failure in the newborn infant. Semin Perinatol 1997;21:426–440.

    Article  CAS  Google Scholar 

  6. Frostell C, Fratacci M, Wain J, Jones R, Zapol W . Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 1991;83:2038–2047.

    Article  CAS  Google Scholar 

  7. Rossaint R, Pison U, Gerlach H, Falke K . Inhaled nitric oxide: its effects on pulmonary circulation and airway smooth muscle cells. Eur Heart J 1993;I:133–140.

    Google Scholar 

  8. Krause M, Lienhart H, Haberstroh J, Hoehn T, Schulte-Mönting J, Leititis J . Effect of iNO on intrapulmonary right to left shunting in two rabbit models of saline lavage induced surfactant deficiency and meconium instillation. Eur J Pediatr 1998;157:410–415.

    Article  CAS  Google Scholar 

  9. Van Meurs K, Rhine W, Asselin J, Durand D, the Preemie NO collaborative group. Response of premature infants with severe respiratory failure to inhaled nitric oxide. Pediatr Pulmonol 1997;24:319–323.

    Article  CAS  Google Scholar 

  10. Putensen C, Räsänen J, Lopez F . Improvement in VA/Q distributions during inhalation of nitric oxide in pigs with methacholine-induced bronchoconstriction. Am J Respir Crit Care Med 1995;151:116–122.

    Article  CAS  Google Scholar 

  11. Dupuy P, Shore S, Drazen J, Frostell C, Adam-Hill W, Zapol W . Bronchodilator action of inhaled nitric oxide in guinea pigs. J Clin Invest 1992;90:421–428.

    Article  CAS  Google Scholar 

  12. Potter C, Dreshaj I, Haxhiu M, Stork E, Chatburn R, Martin R . Effect of exogenous and endogenous nitric oxide on the airway and tissue components of lung resistance in the newborn piglet. Pediatr Res 1997;41:886–891.

    Article  CAS  Google Scholar 

  13. Kinsella J, Parker T, Galan H, Sheridan B, Halbower A, Abman S . Effects of inhaled nitric oxide on pulmonary edema and lung neutrophil accumulation in severe experimental hyaline membrane disease. Pediatr Res 1997;41:457–463.

    Article  CAS  Google Scholar 

  14. Lönnqvist P, Jonsson B, Winberg P, Frostell C . Inhaled nitric oxide in infants with developing or established chronic lung disease. Acta Paediatr 1995;84:1188–1192.

    Article  Google Scholar 

  15. Banks B, Seri I, Ischiropoulos H, Merrill J, Rychik J, Ballard R . Changes in oxygenation with inhaled nitric oxide in severe BPD. Pediatrics 1999;103:610–618.

    Article  CAS  Google Scholar 

  16. Banks B, Seri I, Merill J, Pallotto E, Ballard R . Respiratory outcome of preterm infants with severe chronic lung disease treated with inhaled nitric oxide. Pediatr Res 2000;47:352A.

    Google Scholar 

  17. Hare J, Loh E, Craeger M, Colucci W . Nitric oxide inhibits the positive inotropic response to beta-adrenergic stimulation in humans with left ventricular dysfunction. Circulation 1995;92:2198–2203.

    Article  CAS  Google Scholar 

  18. Hayward C, Kalnins W, Rogers P, Feneley M, MacDonald P, Kelly R . Effect of inhaled nitric oxide on normal left ventricular function. J Am Coll Cardiol 1997;30:49–56.

    Article  CAS  Google Scholar 

  19. Mead J, Whittenberger J . Physical properties of human lungs measured during spontaneous respiration. J Appl Physiol 1953;5:779–796.

    Article  Google Scholar 

  20. Watts J, Ariagno R, Brady J . Chronic pulmonary disease in neonates after artificial ventilation: distribution of ventilation and pulmonary interstitial emphysema. Pediatrics 1977;60(3):273–281.

    CAS  PubMed  Google Scholar 

  21. Kaul S, Tei C, Hopkins J, Shah P . Assessment of right ventricular function using two-dimensional echocardiography. Am heart J 1984;107:526–531.

    Article  CAS  Google Scholar 

  22. Patel N, Hammer J, Nichani S, Numa A, Newth C . Effect of inhaled nitric oxide on respiratory mechanics in ventilated infants with RSV bronchiolitis. Intensive Care Med 1999;25:81–87.

    Article  CAS  Google Scholar 

  23. Gonzalez A, Fabres J, Tapia J . Is iNO a bronchodilator? Serial pulmonary function test in newborns with pulmonary hypertension receiving iNO. Pediatr Res 2000;47(4):359A.

    Google Scholar 

  24. Sward-Comunelli S, Mabry S, Truog W, Thibeault D . Airway muscle in preterm infants: changes during development. J Pediatr 1997;130:570–576.

    Article  CAS  Google Scholar 

  25. Sanna A, Kurtansky A, Veriter C, Stanescu D . Bronchodilator effect of inhaled nitric oxide in healthy men. Am J Resp Crit Care Med 1994;150:1702–1704.

    Article  CAS  Google Scholar 

  26. Pfeffer K, Ellison G, Robertson D, Day R . The effect of inhaled nitric oxide in pediatric asthma. Am J Respir Crit Care Med 1996;153:747–751.

    Article  CAS  Google Scholar 

  27. Clark P, Ekekezie I, Kaftan H, Castor C, Truog W . Safety and efficacy of nitric oxide in chronic lung disease. Arch Dis Child Fetal & Neonatal Ed 2002;86:F41–F45.

    Article  CAS  Google Scholar 

  28. Banks B, Pallotto E, Ballard R . A randomized double blind placebo-controlled crossover pilot trial of inhaled nitric oxide in preterm infants with evolving chronic lung disease. Pediatr Res 2001;49(4):284A.

    Google Scholar 

  29. Hirani W, Shannon D, Kacmarek R, et al. Inhaled nitric oxide in infants and children with bronchopulmonary dysplasia. Am J Resp Crit Care Med 1996;153:A499.

    Article  Google Scholar 

  30. Bolivar J, Gerhardt T, Gonzalez A, Hummler H, Claure N, Everett R, et al. Mechanisms of hypoxemia in preterm infants undergoing mechanical ventilation. J Pediatr 1995;127:767–773.

    Article  CAS  Google Scholar 

  31. Hopkins S, Johnson E, Richardson R, Wagner H, de Rosa M, Wagner P . Effects of inhaled nitric oxide on gas exchange in lungs with shunt or poorly ventilated areas. Am J Resp Crit Care Med 1997;156:484–491.

    Article  CAS  Google Scholar 

  32. Katayama Y, Higgenbottam T, Diaz de Atauri M, et al. Inhaled nitric oxide in patients with chronic obstructive pulmonary disease and severe pulmonary hypertension. Thorax 1997;52:120–124.

    Article  CAS  Google Scholar 

  33. Barbera J, Roger N, Roca J, Rovira I, Higenbottam T, Rodriguez-Roisin R . Worsening of pulmonary gas exchange with nitric oxide inhalation in chronic obstructive pulmonary disease. Lancet 1996;347:436–440.

    Article  CAS  Google Scholar 

  34. Stamler J, Simon D, Osborne J . S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 1992;89:444–448.

    Article  CAS  Google Scholar 

  35. Jia L, Bonaventura C, Bonaventura J, Stamler J . S-nitrosohemoglobin: a dynamic activity of blood involved in vascular control. Nature 1996;380:221–226.

    Article  CAS  Google Scholar 

  36. Semigran M, Cockrill B, Kacmarek R, Thompson T, Zapol W, Dec W, et al. Hemodynamic effects of inhaled nitric oxide in heart failure. J Am Coll Cardiol 1994;24:982–988.

    Article  CAS  Google Scholar 

  37. Natori S, Hasebe N, Jin Y, et al. Effect of inhaled nitric oxide on cardiovascular response to catecholamine in heart failure. J Cardiovasc Pharmacol 2000;36:S55–S60.

    Article  CAS  Google Scholar 

  38. Roze J, Storme L, Zupan V, Morville P, Dinh-Xuan A, Mercier J . Echocardiographic investigation of inhaled nitric oxide in newborn babies with severe hypoxemia. Lancet 1994;344:303–305.

    Article  CAS  Google Scholar 

  39. Hare J, Shernan S, Body S, Graydon E, Colucci W, Couper G . Influence of inhaled nitric oxide on systemic flow and left ventricular filling pressure in patients receiving mechanical circulatory assistance. Circulation 1997;95:2250–2253.

    Article  CAS  Google Scholar 

  40. Ishihara S, Ward J, Tasaki O, Pruitt Jr B, Goodwin Jr C, Mozingo D, et al. Inhaled nitric oxide prevents left ventricular impairment during endotoxemia. J Appl Physiol 1998;85:2018–2024.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the University of Miami Project NewBorn.

Additional support provided by Forest Pharmaceuticals Inc.

Presented in part at the 2002 meeting of the Pediatric Academic Societies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athavale, K., Claure, N., D'Ugard, C. et al. Acute Effects of Inhaled Nitric Oxide on Pulmonary and Cardiac Function in Preterm Infants with Evolving Bronchopulmonary Dysplasia. J Perinatol 24, 769–774 (2004). https://doi.org/10.1038/sj.jp.7211216

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jp.7211216

This article is cited by

Search

Quick links