Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Proton Magnetic Resonance Spectroscopy Improves Outcome Prediction in Perinatal CNS Insults

Abstract

OBJECTIVE: Prediction of neurologic outcome is difficult in neonates with acute nervous system injury. Previous studies using proton magnetic resonance spectroscopy (1H-MRS) have been used to predict short-term neurologic outcome in neonates with a variety of neurologic insults. We were interested in determining the effectiveness of combining clinical evaluation and spectroscopy obtained at the time of injury in predicting neurologic outcome at 24 months.

STUDY DESIGN: We studied 33 neonates with acute central nervous system injury, 5.8±3.7 days of injury, owing to hypoxic–ischemic encephalopathy. Neonates were assessed using clinical variables (initial arterial pH, initial blood glucose, Sarnat score, electroencephalography) and spectroscopy (NAA/Cho, NAA/Cre, Cho/Cre, and lactate). Neonates were divided into two outcome groups: good/moderate and poor. Differences between the groups were assessed using χ2 and t-test analyses. We analyzed the best predictors of outcome using discriminant analysis and calculated sensitivity, specificity, positive, and negative predictive values for each variable independently and in combination.

RESULTS: There were significant differences between the good/moderate and poor outcome for the Sarnat score, EEG, lactate, and NAA/Cho. Spectroscopy combined with clinical variables improved sensitivity, but not specificity for predicting outcome. The presence of lactate had the best individual predictive value. Combination of the clinical with the MRS variables had the highest predictive value.

CONCLUSION: Proton magnetic resonance spectroscopy done early after injury improves the ability to predict neurologic outcome at 24 months of age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Volpe JJ . Hypoxic–ischemic encephalopathy: clinical aspects. In: Volpe JJ, editor. Neurology of the Newborn. 3 ed. Philadelphia: WB Saunders, Co; 1995. p. 314–369.

    Google Scholar 

  2. Robertson CM, Finer NN, Grace MG . School performance of survivors of neonatal encephalopathy associated with birth asphyxia at term. J Pediatr 1989;114:753–760.

    Article  CAS  Google Scholar 

  3. Nelson KB, Ellenberg JH . Apgar scores as predictors of chronic neurologic disability. Pediatrics 1981;68:36–44.

    CAS  PubMed  Google Scholar 

  4. Sarnat HB, Sarnat MS . Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol 1976;33:696–6705.

    Article  CAS  Google Scholar 

  5. Majnemer A, Rosenblatt B . Evoked potentials as predictors of outcome in neonatal intensive care unit survivors: review of the literature. Pediatr Neurol 1996;14:189–195.

    Article  CAS  Google Scholar 

  6. Holmes G, Rowe J, Hafford J, Schmidt R, Testa M, Zimmerman A . Prognostic value of the electroencephalogram in neonatal asphyxia. Electroencephalogr Clin Neurophysiol 1982;53:60–72.

    Article  CAS  Google Scholar 

  7. Rosenkrantz TS, Zalneraitis EL . Prediction of survival in severely asphyxiated infants. Pediatr Neurol 1991;7:446–451.

    Article  CAS  Google Scholar 

  8. Barkovich AJ, Westmark K, Partridge C, Sola A, Ferriero DM . Perinatal asphyxia: MR findings in the first 10 days. Am J Neuroradiol 1995;16:427–438.

    CAS  PubMed  Google Scholar 

  9. Nelson KB, Emery III ES . Birth asphyxia and the neonatal brain: what do we know and when do we know it? Clin Perinatol 1993;20:327–344.

    Article  CAS  Google Scholar 

  10. Shevell MI, Ashwal S, Novotny E . Proton magnetic resonance spectroscopy: clinical applications in children with nervous system diseases. Semin Pediatr Neurol 1999;6:68–77.

    Article  CAS  Google Scholar 

  11. Shu SK, Ashwal S, Holshouser BA, Nystrom G, Hinshaw Jr DB . Prognostic value of 1H-MRS in perinatal CNS insults. Pediatr Neurol 1997;17:309–318.

    Article  CAS  Google Scholar 

  12. Holshouser BA, Ashwal S, Luh GY, et al. Proton MR spectroscopy after acute central nervous system injury: outcome prediction in neonates, infants, and children. Radiology 1997;202:487–496.

    Article  CAS  Google Scholar 

  13. Ashwal S, Holshouser BA, Tomasi LG, et al. 1H- magnetic resonance spectroscopy-determined cerebral lactate and poor neurological outcomes in children with central nervous system disease. Ann Neurol 1997;41:470–481.

    Article  CAS  Google Scholar 

  14. Groenendaal F, Veenhoven RH, van der Grond J, Jansen GH, Witkamp TD, de Vries LS . Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy. Pediatr Res 1994;35:148–151.

    Article  CAS  Google Scholar 

  15. Barkovich AJ, Baranski K, Vigneron D, et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. Am J Neuroradiol 1999;20:1399–1405.

    CAS  PubMed  Google Scholar 

  16. Nelson KB, Ellenberg JH . Children who “outgrew’ cerebral palsy. Pediatrics 1982;69:529–536.

    CAS  PubMed  Google Scholar 

  17. Piper MC, Mazer B, Silver KM, Ramsay M . Resolution of neurological symptoms in high-risk infants during the first two years of life. Dev Med Child Neurol 1988;30:26–35.

    Article  CAS  Google Scholar 

  18. Fiser DH . Assessing the outcome of pediatric intensive care. J Pediatr 1992;121:68–74.

    Article  CAS  Google Scholar 

  19. Holshouser BA, Ashwal S, Shu S, Hinshaw Jr DB . Proton MR spectroscopy in children with acute brain injury: comparison of short and long echo time acquisitions. J Magn Reson Imaging 2000;11:9–19.

    Article  CAS  Google Scholar 

  20. Klose U . In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 1990;14:26–30.

    Article  CAS  Google Scholar 

  21. Ashwal S, Holshouser BA, Hinshaw Jr DB, Schell RM, Bailey L . Proton magnetic resonance spectroscopy in the evaluation of children with congenital heart disease and acute central nervous system injury. J Thorac Cardiovasc Surg 1996;112:403–414.

    Article  CAS  Google Scholar 

  22. Kreis R, Ernst T, Ross BD . Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med 1993;30:424–437.

    Article  CAS  Google Scholar 

  23. Urenjak J, Williams SR, Gadian DG, Noble M . Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 1993;13:981–989.

    Article  CAS  Google Scholar 

  24. Bhakoo KK, Pearce D . In vitro expression of N-acetyl aspartate by oligodendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo. J Neurochem 2000;74:254–262.

    Article  CAS  Google Scholar 

  25. Peden CJ, Rutherford MA, Sargentoni J, Cox IJ, Bryant DJ, Dubowitz LM . Proton spectroscopy of the neonatal brain following hypoxic–ischaemic injury. Dev Med Child Neurol 1993;35:502–510.

    Article  CAS  Google Scholar 

  26. Robertson NJ, Cox IJ, Cowan FM, Counsell SJ, Azzopardi D, Edwards AD . Cerebral intracellular lactic alkalosis persisting months after neonatal encephalopathy measured by magnetic resonance spectroscopy. Pediatr Res 1999;46:287–296.

    Article  CAS  Google Scholar 

  27. Roelants-Van Rijn AM, van der Grond J, de Vries LS, Groenendaal F . Value of 1H-MRS using different echo times in neonates with cerebral hypoxia–ischemia. Pediatr Res 2001;49:356–362.

    Article  CAS  Google Scholar 

  28. Foz FB, Lucchini FL, Palimieri S, et al. Language plasticity revealed by electroencephalogram mapping. Pediatr Neurol 2002;26:106–115.

    Article  Google Scholar 

  29. Hertz-Pannier L, Chiron C, Jambaque I, et al. Late plasticity for language in a child's non-dominant hemisphere: A pre- and post-surgery fMRI study. Brain 2002;125:361–372.

    Article  Google Scholar 

  30. Penrice J, Lorek A, Cady EB, et al. Proton magnetic resonance spectroscopy of the brain during acute hypoxia–ischemia and delayed cerebral energy failure in the newborn piglet. Pediatr Res 1997;41:795–7802.

    Article  CAS  Google Scholar 

  31. Lorek A, Takei Y, Cady EB, et al. Delayed (“secondary”) cerebral energy failure after acute hypoxia–ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 1994;36:699–6706.

    Article  CAS  Google Scholar 

  32. During MJ, Fried I, Leone P, Katz A, Spencer DD . Direct measurement of extracellular lactate in the human hippocampus during spontaneous seizures. J Neurochem 1994;62:2356–2361.

    Article  CAS  Google Scholar 

  33. Lanfermann H, Kugel H, Heindel W, Herholz K, Heiss WD, Lackner K . Metabolic changes in acute and subacute cerebral infarctions: Findings at proton MR spectroscopic imaging. Radiology 1995;196:203–210.

    Article  CAS  Google Scholar 

  34. Petroff OA, Graham GD, Blamire AM, et al. Spectroscopic imaging of stroke in humans: histopathology correlates of spectral changes. Neurology 1992;42:1349–1354.

    Article  CAS  Google Scholar 

  35. Hetherington H, Kuzniecky R, Pan J, et al. Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1 T. Ann Neurol 1995;38:396–3404.

    Article  CAS  Google Scholar 

  36. Saunders DE, Howe FA, van den Boogaart A, Griffiths JR, Brown MM . Discrimination of metabolite from lipid and macromolecule resonances in cerebral infarction in humans using short echo proton spectroscopy. J Magn Reson Imaging 1997;7:1116–1121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadri, M., Shu, S., Holshouser, B. et al. Proton Magnetic Resonance Spectroscopy Improves Outcome Prediction in Perinatal CNS Insults. J Perinatol 23, 181–185 (2003). https://doi.org/10.1038/sj.jp.7210913

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jp.7210913

This article is cited by

Search

Quick links