Selective initial in vivo homing pattern of 5T2 multiple myeloma cells in the C57BL/KalwRij mouse

This article has been updated

Abstract

One of the main characteristics of multiple myeloma cells is their predominant localization in the bone marrow. It is, however, unclear whether this is due to a selective initial entry, or whether this entry is more random and other processes like survival and/or growth stimulation, only present in the medullar microenvironment, are unique. To investigate this, in vivo homing kinetics of murine 5T2MM cells shortly after injection were assessed in bone marrow, liver, spleen, lungs, heart, intestines, kidney and testis by tracing of radiolabelled cells, by immunostaining of isolated cells and by polymerase chain reaction analysis. We demonstrated the presence of 5T2MM cells in bone marrow, spleen and liver with all other organs being negative. Adhesion assays of 5T2MM cells to different types of endothelial cells demonstrated a selective adhesion of 5T2MM cells to bone marrow and liver and not to lung endothelial cells. We here demonstrate that the specific in vivo localization of the 5T2MM cells is a result of the combination of a selective entry/adhesion of the 5T2MM cells in the bone marrow, spleen and liver, and a selective survival and growth of these tumour cells in the bone marrow and spleen but not in the liver. © 2000 Cancer Research Campaign

Change history

  • 16 November 2011

    This paper was modified 12 months after initial publication to switch to Creative Commons licence terms, as noted at publication

References

  1. Aoudjit F, Potworowski EF and St-Pierre Y (1998) The metastatic characteristics of murine lymphoma cell lines in vivo are manifested after target organ invasion. Blood 91: 623–629

    CAS  PubMed  Google Scholar 

  2. Bakkus MH, Heirman C, Van Riet I, Van Camp B and Thielemans K (1992) Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 80: 2326–2335

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Berlin-Rufenach C, Otto F, Mathies M, Westermann J, Owen MJ, Hamann A and Hogg N (1999) Lymphocyte migration in lymphocyte function-associated antigen (LFA-1)-deficient mice. J Exp Med 9: 1467–1478

    Article  Google Scholar 

  4. Bianchi E, Bender JR, Blasi F and Pardi R (1997) Through and beyond the wall: late steps in leukocyte transendothelial migration. Immunol Today 18: 586–591

    CAS  Article  PubMed  Google Scholar 

  5. Blair A and Thomas DB (1997) Preferential adhesion of fetal liver derived primitive haemopoietic progenitor cells to bone marrow stroma. Br J Haematol 99: 726–731

    CAS  Article  PubMed  Google Scholar 

  6. Butcher EC and Picker LJ (1996) Lymphocyte homing and homeostasis. Science 272: 60–66

    CAS  Article  Google Scholar 

  7. Cardier JE and Barbera-Guillem E (1997) Extramedullary hematopoiesis in adult liver is associated with specific sinusoidal endothelial cells. Hepatology 26: 165–175

    CAS  Article  PubMed  Google Scholar 

  8. Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM and Strober W (1984) Induction and measurement of cytotoxic T lymphocyte activity. Current Protocols in Immunology, Coico R (ed) pp. 3–11.14, Wiley Interscience:

    Google Scholar 

  9. De Bleser P, Niki T, Rogiers V and Geerts A (1997) Transforming growth factor-β gene expression in normal and fibrotic rat liver. J Hepatol 26: 886–893

    CAS  Article  PubMed  Google Scholar 

  10. Feng D, Nagy JA, Pyne K, Dvorak HF and Dvorak AM (1998) Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 187: 903–915

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Frenette PS, Subbarao S, Mazo IB, von Adrian UH and Wagner DD (1998) Endothelial selectins and vascular cell adhesion molecule-1 promote hematopietic progenitor homing to bone marrow. Proc Natl Acad Sci USA 95: 14423–14428

    CAS  Article  PubMed  Google Scholar 

  12. Hallek M, Bergsagel PL and Anderson KC (1998) Multiple myeloma: increasing evidence for a multistep transformation process. Blood 91: 3–31

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hardin J, MacLeod S, Grigorieva I, Chang R, Barlogie B, Xiao H and Epstein J (1994) Interleukin-6 prevents dexamathasone-induced myeloma cell death. Blood 84: 3063–3070

    CAS  PubMed  Google Scholar 

  14. Imai K and Kobayashi M (1998) Differences between bone marrow and lung endothelial cells. Semin Thromb Hemostas 24: 275–277

    CAS  Article  Google Scholar 

  15. Imai K, Kobayashi M, Wang J, Ohiro Y, Hamada JI, Cho Y, Imamura M, Musashi M, Kondo T, Hosokawa M and Asaka M (1999) Selective transendothelial migration of hematopoietic progenitor cells: a role in homing of progenitor cells. Blood 93: 149–156

    CAS  PubMed  Google Scholar 

  16. Jaeschke H and Smith CW (1997) Cell adhesion and migration. III. Leukocyte adhesion and transmigration in the liver vasculature. Am J Physiol 273, Gastrointest. Liver Physiol G1169–1173

    CAS  PubMed  Google Scholar 

  17. Jonas P, Holzmann B, Jablonski-Westrich D and Hamann A (1998) Dissemination capacity of murine lymphoma cells is not dependent on efficient homing. Int J Cancer 77: 402–407

    CAS  Article  PubMed  Google Scholar 

  18. Juge-Morineau N, Francois S, Puthier D, Godard A, Bataille R and Amiot M (1995) The gp130 family cytokines IL-6, LIF and OSM but not IL-11 can reverse the anti-proliferative effect of dexamethasone on human myeloma cells. Br J Haematol 90: 707–710

    CAS  Article  PubMed  Google Scholar 

  19. Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, Asaoku H, Tang B, Tanabe O, Tanaka H, Kuramoto A and Kishimoto T (1988) Autocrine generation and requirement of BSF-2/I1-6 for human multiple myelomas. Nature 332: 83–85

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Klein B, Zhang XG, Jourdan M, Content J, Houssiu F, Aarden L, Piechaczyk M and Bataille R (1989) Paracrine rather than autocrine regulation of myeloma-cell growth and differentation by interleukin-6. Blood 73: 517–526

    CAS  Google Scholar 

  21. Mazo IB, Gutierrez-Ramos JC, Frenette PS, Hynes RO, Wagner DD and von Andrian UH (1998) Hematopoietic progenitor cell rolling in BM microvessels: parallel contributions by endothelial selectins and vascular adhesion molecule 1. J Exp Med 188: 465–474

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Pope B, Brown R, Gibson J and Joshua D (1997) Plasma cells in peripheral blood stem cell harvest from patients with multiple myeloma are predominantly polyclonal. Bone Marrow Transplant 20: 205–210

    CAS  Article  PubMed  Google Scholar 

  23. Radl J, De Glopper E, Schuit HRE and Zurcher C (1979) Idiopathic paraproteinemia. II. Transplantation of the paraprotein-producing clone from old to young C57BL/KaLwRij mice. J Immunol 122: 609–613

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Salmi M, Adams D and Jalkanen S (1998) Cell adhesion and migration. IV. Lymphocyte trafficking in the intestine and liver. Am J Physiol 274, Gastrointest. Liver Physiol G1–G6

    CAS  Article  PubMed  Google Scholar 

  25. Smedsrod B and Pertoft H (1985) Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence. J Leukoc Biol 38: 213–230

    CAS  Article  PubMed  Google Scholar 

  26. Smith ME and Ford WL (1983) The recirculating lymphocyte pool of the rat: a systematic description of the migratory behaviour of recirculating lymphocytes. Immunology 49: 83–94

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanigushi H, Toyoshima T, Fukao K and Nakauchi H (1996) Presence of hematopoietic stem cells in the adult liver. Nat Med 2: 198–203

    Article  Google Scholar 

  28. Tietz W and Hamann A (1997) The migratory behaviour of murine CD4+ cells of memory phenotype. Eur J Immunol 27: 2225–2232

    CAS  Article  PubMed  Google Scholar 

  29. Uchiyama H, Barut KA, Mohrabacher AF, Chauchan D and Anderson KC (1993) Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 seceretion. Blood 82: 3712–3720

    CAS  PubMed  Google Scholar 

  30. Van Riet I, Heirman C, Lacor P, De Waele M, Thielemans K and Van Camp B (1989) Detection of monoclonal B lymphocytes in bone marow and peripheral blood of multiple myeloma patients by immunoglobulin gene rearrangements studies. Br J Haematol 73: 289–295

    CAS  Article  PubMed  Google Scholar 

  31. Van Riet I, De Greef C, Aharchi F, Woischwill C, De Waele M, Bakkus M, Lacor P, Schots R and Van Camp B (1997) Establishment and characterization of a human stroma-dependent myeloma cell line (MM5.1) and its stroma-independent variant (MM5.2). Leukemia 11: 284–293

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Van Riet I, Vanderkerken K, De Greef C and Van Camp, (1998) Homing behaviour of the malignant cell clone in multiple myeloma. Medical Oncology 15: 154–164

    CAS  Article  PubMed  Google Scholar 

  33. Vanderkerken K, Goes E, De Raeve H, Radl J and Van Camp B (1996) Follow-up of bone lesions in an experimental multiple myeloma mouse model: description of an in vivo technique using radiography dedicated for mammography. Br J Cancer 73: 1463–1465

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Vanderkerken K, De Raeve H, Goes E, Van Meirvenne S, Radl J, Van Riet I, Thielemans K and Van Camp B (1997) Organ involvement and phenotypic adhesion profile of 5T2 and 5T33 myeloma cells in the C57BL/KaLwRij mouse. Br J Cancer 76: 451–460

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Vanderkerken K, Asosingh K, Braet F, Van Riet I and Van Camp B (1999) Insulin like growth factor-1 acts as a chemoattractant factor for 5T2 multiple myeloma cells. Blood 93: 235–241

    CAS  PubMed  Google Scholar 

  36. Van Rooijen N (1989) The liposome-mediated ‘suicide’ technique. J Immunol Methods 124: 1–6

    CAS  Article  PubMed  Google Scholar 

  37. Van Rooijen N and Sanders A (1996) Kupffer cell depletion by liposome-delivered drugs: comparative activity by intracellular clodronate, propamidine, and ethylenediaminetetraacetic acid. Hepatology 23: 1239–1243

    CAS  Article  PubMed  Google Scholar 

  38. Zhu D, Van Arkel C, King CA, Van Meirvenne S, De Greef C, Thielemans K, Radl J and Stevenson K (1998) Immunoglobulin VHgene sequence analysis of spontaneous murine immunoglobule-secreting B-cell tumors with clinical features of human disease. Immunology 93: 162–170

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Reprints and Permissions

About this article

Cite this article

Vanderkerken, K., Greef, C., Asosingh, K. et al. Selective initial in vivo homing pattern of 5T2 multiple myeloma cells in the C57BL/KalwRij mouse. Br J Cancer 82, 953–959 (2000). https://doi.org/10.1054/bjoc.1999.1024

Download citation

Keywords

  • homing
  • multiple myeloma
  • bone marrow

Further reading

Search