Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex

A Retraction to this article was published on 17 October 2017

Abstract

Chronic lithium and carbamazepine, which are effective against mania in bipolar disorder, decrease the activity of cytosolic phospholipase A2 (cPLA2) and the turnover rate of arachidonic acid in phospholipids in rat brain. Assuming that stages of bipolar disorder are related to brain arachidonic acid metabolism, we hypothesized that drugs effective in depression would increase cPLA2 activity. To test this hypothesis, adult male CDF-344 rats were administered fluoxetine (10 mg/kg intraperitoneally (i.p.) or saline (control) (i.p.) chronically for 21 days. Frontal cortex cPLA2 protein, phosphorylated cPLA2, activity and mRNA levels were increased after chronic fluoxetine. Transcription factors (activator protein-1, activator protein-2, glucocorticoid response element, polyoma enhancer element-3 and nuclear factor-kappa B) that are known to regulate cPLA2 gene expression were not significantly changed by chronic fluoxetine, but nuclear AU-rich element/poly(U)-binding/degradation factor-1 RNA-stabilizing protein was increased significantly. The results suggest that chronic fluoxetine increases brain cPLA2 gene expression post-transcriptionally by increasing cPLA2 mRNA stabilization. Chronic fluoxetine's effect on cPLA2 expression was opposite to the effect reported with chronic lithium or carbamazepine administration, and may be part of fluoxetine's mode of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

AP-1:

activator protein-1

AP-2:

activator protein-2

AUF:

AU-rich element/poly(U)-binding/degradation factor

cPLA2:

cytosolic phospholipase A2

iPLA2:

calcium-independent phospholipase A2

MAPK:

mitogen-activated protein kinase

PEA3:

polyoma enhancer element 3

NF-κB:

nuclear factor kappa B

sPLA2:

secretory phospholipase A2

SSRI:

selective serotonin reuptake inhibitor

5-HT:

serotonin

References

  1. Tohen M, Vieta E, Calabrese J, Ketter TA, Sachs G, Bowden C et al. Efficacy of olanzapine and olanzapine-fluoxetine combination in the treatment of bipolar I depression. Arch Gen Psychiatry 2003; 60: 1079–1088.

    CAS  PubMed  Google Scholar 

  2. Goodwin GM . Evidence-based guidelines for treating bipolar disorder: recommendations from the British Association for Psychopharmacology. J Psychopharmacol 2003; 17: 149–173; discussion 147.

    CAS  PubMed  Google Scholar 

  3. Benfield P, Heel RC, Lewis SP . Fluoxetine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 1986; 32: 481–508.

    CAS  PubMed  Google Scholar 

  4. Wong DT, Perry KW, Bymaster FP . Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov 2005; 4: 764–774.

    CAS  PubMed  Google Scholar 

  5. Nierenberg AA . Do some antidepressants work faster than others? J Clin Psychiatry 2001; 62 (Suppl 15): 22–25.

    CAS  PubMed  Google Scholar 

  6. Gardier AM, Malagie I, Trillat AC, Jacquot C, Artigas F . Role of 5-HT1A autoreceptors in the mechanism of action of serotoninergic antidepressant drugs: recent findings from in vivo microdialysis studies. Fundam Clin Pharmacol 1996; 10: 16–27.

    CAS  PubMed  Google Scholar 

  7. Le Poul E, Laaris N, Hamon M, Lanfumey L . Fluoxetine-induced desensitization of somatodendritic 5-HT1A autoreceptors is independent of glucocorticoid(s). Synapse 1997; 27: 303–312.

    CAS  PubMed  Google Scholar 

  8. Hjorth S, Auerbach SB . 5-HT1A autoreceptors and the mode of action of selective serotonin reuptake inhibitors (SSRI). Behav Brain Res 1996; 73: 281–283.

    CAS  PubMed  Google Scholar 

  9. Dawson LA, Nguyen HQ, Smith DI, Schechter LE . Effects of chronic fluoxetine treatment in the presence and absence of (±)pindolol: a microdialysis study. Br J Pharmacol 2000; 130: 797–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Laakso A, Palvimaki EP, Kuoppamaki M, Syvalahti E, Hietala J . Chronic citalopram and fluoxetine treatments upregulate 5-HT2c receptors in the rat choroid plexus. Neuropsychopharmacology 1996; 15: 143–151.

    CAS  PubMed  Google Scholar 

  11. Damjanoska KJ, Van de Kar LD, Kindel GH, Zhang Y, D'Souza DN, Garcia F et al. Chronic fluoxetine differentially affects 5-hydroxytryptamine (2A) receptor signaling in frontal cortex, oxytocin- and corticotropin-releasing factor-containing neurons in rat paraventricular nucleus. J Pharmacol Exp Ther 2003; 306: 563–571.

    CAS  PubMed  Google Scholar 

  12. Tilakaratne N, Yang Z, Friedman E . Chronic fluoxetine or desmethylimipramine treatment alters 5-HT2 receptor mediated c-fos gene expression. Eur J Pharmacol 1995; 290: 263–266.

    CAS  PubMed  Google Scholar 

  13. Massou JM, Trichard C, Attar-Levy D, Feline A, Corruble E, Beaufils B et al. Frontal 5-HT2A receptors studied in depressive patients during chronic treatment by selective serotonin reuptake inhibitors. Psychopharmacology (Berlin) 1997; 133: 99–101.

    CAS  Google Scholar 

  14. Ong WY, Sandhya TL, Horrocks LA, Farooqui AA . Distribution of cytoplasmic phospholipase A2 in the normal rat brain. J Hirnforsch 1999; 39: 391–400.

    PubMed  Google Scholar 

  15. Murakami M, Kambe T, Shimbara S, Kudo I . Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J Biol Chem 1999; 274: 3103–3115.

    CAS  PubMed  Google Scholar 

  16. Murakami M, Shimbara S, Kambe T, Kuwata H, Winstead MV, Tischfield JA et al. The functions of five distinct mammalian phospholipase A2S in regulating arachidonic acid release. Type IIa and type V secretory phospholipase A2S are functionally redundant and act in concert with cytosolic phospholipase A2. J Biol Chem 1998; 273: 14411–14423.

    CAS  PubMed  Google Scholar 

  17. Akiba S, Mizunaga S, Kume K, Hayama M, Sato T . Involvement of group VI Ca2+-independent phospholipase A2 in protein kinase C-dependent arachidonic acid liberation in zymosan-stimulated macrophage-like P388D1 cells. J Biol Chem 1999; 274: 19906–19912.

    CAS  PubMed  Google Scholar 

  18. Yang HC, Mosior M, Johnson CA, Chen Y, Dennis EA . Group-specific assays that distinguish between the four major types of mammalian phospholipase A2. Anal Biochem 1999; 269: 278–288.

    CAS  PubMed  Google Scholar 

  19. Murakami M, Kudo I . Phospholipase A2. J Biochem (Tokyo) 2002; 131: 285–292.

    CAS  Google Scholar 

  20. Funk CD . Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001; 294: 1871–1875.

    CAS  PubMed  Google Scholar 

  21. Lands WEM, Crawford CG . Enzymes of membrane phospholipid metabolism. In: Marinosi A (ed). Plenum press: New York, 1976, pp 3–85.

  22. Kam PC, See AU . Cyclo-oxygenase isoenzymes: physiological and pharmacological role. Anaesthesia 2000; 55: 442–449.

    CAS  PubMed  Google Scholar 

  23. Leslie JB, Watkins WD . Eicosanoids in the central nervous system. J Neurosurg 1985; 63: 659–668.

    CAS  PubMed  Google Scholar 

  24. O'Banion MK . Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev Neurobiol 1999; 13: 45–82.

    CAS  PubMed  Google Scholar 

  25. Felder CC, Kanterman RY, Ma AL, Axelrod J . Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositolphospholipid hydrolysis. Proc Natl Acad Sci USA 1990; 87: 2187–2191.

    CAS  PubMed  Google Scholar 

  26. Garcia MC, Kim HY . Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res 1997; 768: 43–48.

    CAS  PubMed  Google Scholar 

  27. Qu Y, Villacreses N, Murphy DL, Rapoport SI . 5-HT2A/2C receptor signaling via phospholipase A2 and arachidonic acid is attenuated in mice lacking the serotonin reuptake transporter. Psychopharmacology (Berlin) 2005; 180: 12–20.

    CAS  Google Scholar 

  28. Stout BD, Clarke WP, Berg KA . Rapid desensitization of the serotonin(2C) receptor system: effector pathway and agonist dependence. J Pharmacol Exp Ther 2002; 302: 957–962.

    CAS  PubMed  Google Scholar 

  29. Hussain T, Lokhandwala MF . Dopamine-1 receptor G-protein coupling and the involvement of phospholipase A2 in dopamine-1 receptor mediated cellular signaling mechanisms in the proximal tubules of SHR. Clin Exp Hypertens 1997; 19: 131–140.

    CAS  PubMed  Google Scholar 

  30. Hayakawa T, Chang MC, Rapoport SI, Appel NM . Selective dopamine receptor stimulation differentially affects [3H]arachidonic acid incorporation, a surrogate marker for phospholipase A2-mediated neurotransmitter signal transduction, in a rodent model of Parkinson's disease. J Pharmacol Exp Ther 2001; 296: 1074–1084.

    CAS  PubMed  Google Scholar 

  31. Basselin M, Chang L, Bell JM, Rapoport SI . Chronic lithium chloride administration attenuates brain NMDA receptor-initiated signaling via arachidonic acid in unanesthetized rats. Neuropsychopharmacology 2005; Nov. 9.

  32. Weichel O, Hilgert M, Chatterjee SS, Lehr M, Klein J . Bilobalide, a constituent of Ginkgo biloba, inhibits NMDA-induced phospholipase A2 activation and phospholipid breakdown in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 1999; 360: 609–615.

    CAS  PubMed  Google Scholar 

  33. Qu Y, Chang L, Klaff J, Seemann R, Rapoport SI . Imaging brain phospholipase A2-mediated signal transduction in response to acute fluoxetine administration in unanesthetized rats. Neuropsychopharmacology 2003; 28: 1219–1226.

    CAS  PubMed  Google Scholar 

  34. Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ . Chronic carbamazepine decreases the incorporation rate and turnover of arachidonic Acid but not docosahexaenoic acid in brain phospholipids of the unanesthetized rat: Relevance to bipolar disorder. Biological Psychiatry 2006; 59: 401–407.

    CAS  PubMed  Google Scholar 

  35. Chang MC, Contreras MA, Rosenberger TA, Rintala JJ, Bell JM, Rapoport SI . Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: a possible common effect of mood stabilizers. J Neurochem 2001; 77: 796–803.

    CAS  PubMed  Google Scholar 

  36. Chang MC, Grange E, Rabin O, Bell JM, Allen DD, Rapoport SI . Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci Lett 1996; 220: 171–174.

    CAS  PubMed  Google Scholar 

  37. Ghelardoni S, Tomita YA, Bell JM, Rapoport SI, Bosetti F . Chronic carbamazepine selectively downregulates cytosolic phospholipase A2 expression and cyclooxygenase activity in rat brain. Biol Psychiatry 2004; 56: 248–254.

    CAS  PubMed  Google Scholar 

  38. Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA et al. 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. Neuroreport 1999; 10: 3887–3890.

    CAS  PubMed  Google Scholar 

  39. Feder R . Fluoxetine-induced mania. J Clin Psychiatry 1990; 51: 524–525.

    CAS  PubMed  Google Scholar 

  40. Ghaemi SN, Hsu DJ, Soldani F, Goodwin FK . Antidepressants in bipolar disorder: the case for caution. Bipolar Disord 2003; 5: 421–433.

    CAS  PubMed  Google Scholar 

  41. Dean JL, Sully G, Clark AR, Saklatvala J . The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal 2004; 16: 1113–1121.

    CAS  PubMed  Google Scholar 

  42. Drevets WC . Prefrontal cortical–amygdalar metabolism in major depression. Ann NY Acad Sci 1999; 877: 614–637.

    CAS  PubMed  Google Scholar 

  43. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI . Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 2004; 67: 269–275.

    PubMed  Google Scholar 

  44. Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP . Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 2002; 12: 386–394.

    PubMed  Google Scholar 

  45. Rajkowska G . Depression: what we can learn from postmortem studies. Neuroscientist 2003; 9: 273–284.

    PubMed  Google Scholar 

  46. Drevets WC, Ongur D, Price JL . Neuroimaging abnormalities in the subgenual prefrontal cortex: implications for the pathophysiology of familial mood disorders. Mol Psychiatry 1998; 3: 220–226, 190–221.

    CAS  PubMed  Google Scholar 

  47. Rao JS, Bazinet RP, Lee HJ, Rapoport SI . Mood stabilizers that downregulate the brain arachidonic acid cascade reduce AP-2 or NF-kB transcription factors in rat frontal cortex. Neuro Psychopharmacology – Supplement 44th ACNP Annual Meeting. Waikoloa, Hawaii, 2005.

    Google Scholar 

  48. Rao JS, Rapoport SI, Bosetti F . Decrease in the AP-2 DNA-binding activity and in the protein expression of AP-2 alpha and AP-2 beta in frontal cortex of rats treated with lithium for 6 weeks. Neuropsychopharmacology 2005; 30: 2006–2013.

    CAS  PubMed  Google Scholar 

  49. Durand M, Berton O, Aguerre S, Edno L, Combourieu I, Mormede P et al. Effects of repeated fluoxetine on anxiety-related behaviours, central serotonergic systems, and the corticotropic axis axis in SHR and WKY rats. Neuropharmacology 1999; 38: 893–907.

    CAS  PubMed  Google Scholar 

  50. Caccia S, Cappi M, Fracasso C, Garattini S . Influence of dose and route of administration on the kinetics of fluoxetine and its metabolite norfluoxetine in the rat. Psychopharmacology (Berlin) 1990; 100: 509–514.

    CAS  Google Scholar 

  51. Morri H, Ozaki M, Watanabe Y . 5′-Flanking region surrounding a human cytosolic phospholipase A2 gene. Biochem Biophys Res Commun 1994; 205: 6–11.

    CAS  PubMed  Google Scholar 

  52. Tay A, Maxwell P, Li ZG, Goldberg H, Skorecki K . Cytosolic phospholipase A2 gene expression in rat mesangial cells is regulated post-transcriptionally. Biochem J 1994; 304 (Part 2): 417–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Borsch-Haubold AG, Bartoli F, Asselin J, Dudler T, Kramer RM, Apitz-Castro R et al. Identification of the phosphorylation sites of cytosolic phospholipase A2 in agonist-stimulated human platelets and HeLa cells. J Biol Chem 1998; 273: 4449–4458.

    CAS  PubMed  Google Scholar 

  54. Hefner Y, Borsch-Haubold AG, Murakami M, Wilde JI, Pasquet S, Schieltz D et al. Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. J Biol Chem 2000; 275: 37542–37551.

    CAS  PubMed  Google Scholar 

  55. Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramauge M, Courtin F et al. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 2004; 24: 207–216.

    CAS  PubMed  Google Scholar 

  56. Coulon L, Calzada C, Moulin P, Vericel E, Lagarde M . Activation of p38 mitogen-activated protein kinase/cytosolic phospholipase A2 cascade in hydroperoxide-stressed platelets. Free Radic Biol Med 2003; 35: 616–625.

    CAS  PubMed  Google Scholar 

  57. Nemenoff RA, Winitz S, Qian NX, Van Putten V, Johnson GL, Heasley LE . Phosphorylation and activation of a high molecular weight form of phospholipase A2 by p42 microtubule-associated protein 2 kinase and protein kinase C. J Biol Chem 1993; 268: 1960–1964.

    CAS  PubMed  Google Scholar 

  58. Kucia K, Malecki A, Gabryel B, Trzeciak HI . Effect of antidepressants on the phospholipase A2 activity in plasma membranes of the rat brain cortex. Pol J Pharmacol 2003; 55: 5–15.

    CAS  PubMed  Google Scholar 

  59. Qu Y, Chang L, Klaff J, Seemann R, Greenstein D, Rapoport SI . Chronic fluoxetine administration enchances brain phospholipase A2 signaling via arachidonic acid in unanesthetized rats. Eur J Pharmacol 2006; March 2.

  60. Bazinet RP, Rao JS, Chang L, Rapoport SI, Lee HJ . Chronic valproate does not alter the kinetics of docosahexaenoic acid within brain phospholipids of the unanesthetized rat. Psychopharmacology (Berlin) 2005; 182: 180–185.

    CAS  Google Scholar 

  61. Chang MC, Bell JM, Purdon AD, Chikhale EG, Grange E . Dynamics of docosahexaenoic acid metabolism in the central nervous system: lack of effect of chronic lithium treatment. Neurochem Res 1999; 24: 399–406.

    CAS  PubMed  Google Scholar 

  62. Bazinet RP, Weis MT, Rapoport SI, Rosenberger TA . Valproic acid selectively inhibits conversion of arachidonic acid to arachidonoyl-CoA by microsomal long-chain fatty acyl-CoA synthetases: Relevance to bipolar disorder. Psychopharmacology (Berlin) 2006; 1: 122–129.

    Google Scholar 

  63. Weerasinghe GR, Rapoport SI, Bosetti F . The effect of chronic lithium on arachidonic acid release and metabolism in rat brain does not involve secretory phospholipase A2 or lipoxygenase/cytochrome P450 pathways. Brain Res Bull 2004; 63: 485–489.

    CAS  PubMed  Google Scholar 

  64. Koide H, Ogita K, Kikkawa U, Nishizuka Y . Isolation and characterization of the epsilon subspecies of protein kinase C from rat brain. Proc Natl Acad Sci USA 1992; 89: 1149–1153.

    CAS  PubMed  Google Scholar 

  65. Abou-Samra AB, Catt KJ, Aguilera G . Biphasic inhibition of adrenocorticotropin release by corticosterone in cultured anterior pituitary cells. Endocrinology 1986; 119: 972–977.

    CAS  PubMed  Google Scholar 

  66. Cambronero JC, Rivas FJ, Borrell J, Guaza C . Role of arachidonic acid metabolism on corticotropin-releasing factor (CRF)-release induced by interleukin-1 from superfused rat hypothalami. J Neuroimmunol 1992; 39: 57–66.

    CAS  PubMed  Google Scholar 

  67. Pfennig A, Kunzel HE, Kern N, Ising M, Majer M, Fuchs B et al. Hypothalamus-pituitary-adrenal system regulation and suicidal behavior in depression. Biol Psychiatry 2005; 57: 336–342.

    CAS  PubMed  Google Scholar 

  68. Giovacchini G, Chang MC, Channing MA, Toczek M, Mason A, Bokde AL et al. Brain incorporation of [11C]arachidonic acid in young healthy humans measured with positron emission tomography. J Cereb Blood Flow Metab 2002; 22: 1453–1462.

    CAS  PubMed  Google Scholar 

  69. Giovacchini G, Lerner A, Toczek MT, Fraser C, Ma K, DeMar JC et al. Brain incorporation of 11C-arachidonic acid, blood volume, and blood flow in healthy aging: a study with partial-volume correction. J Nucl Med 2004; 45: 1471–1479.

    CAS  PubMed  Google Scholar 

  70. El Yacoubi M, Bouali S, Popa D, Naudon L, Leroux-Nicollet I, Hamon M et al. Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. Proc Natl Acad Sci USA 2003; 100: 6227–6232.

    CAS  PubMed  Google Scholar 

  71. Dulawa SC, Holick KA, Gundersen B, Hen R . Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 2004; 29: 1321–1330.

    CAS  PubMed  Google Scholar 

  72. De Foubert G, Carney SL, Robinson CS, Destexhe EJ, Tomlinson R, Hicks CA et al. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 2004; 128: 597–604.

    CAS  PubMed  Google Scholar 

  73. Lucas KK, Dennis EA . Distinguishing phospholipase A2 types in biological samples by employing group-specific assays in the presence of inhibitors. Prostaglandins Other Lipid Mediat 2005; 77: 235–248.

    CAS  PubMed  Google Scholar 

  74. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the NIH, NIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, J., Ertley, R., Lee, HJ. et al. Chronic fluoxetine upregulates activity, protein and mRNA levels of cytosolic phospholipase A2 in rat frontal cortex. Pharmacogenomics J 6, 413–420 (2006). https://doi.org/10.1038/sj.tpj.6500391

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500391

Keywords

This article is cited by

Search

Quick links