Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Haplotypes of the cholesteryl ester transfer protein gene predict lipid-modifying response to statin therapy

ABSTRACT

Cholesteryl ester transfer protein (CETP) plays a central role in high-density lipoprotein (HDL) metabolism. Single nucleotide polymorphisms (SNPs) and haplotypes in the CETP gene were determined in 98 patients with untreated dyslipidemias and analyzed for associations with plasma CETP and plasma lipids before and during statin treatment. Individual CETP SNPs and haplotypes were both significantly associated with CETP enzyme mass and activity. However, only certain CETP haplotypes, but not individual SNPs, significantly predicted the magnitude of change in HDL cholesterol (HDL-C) and triglycerides. After adjusting for covariates and multiple testing, the TTCAAA haplotype showed a gene-dose effect in predicting the HDL-C increase (P=0.03), while the TTCAAAGGG and AAAGGG haplotypes predicted a decrease in triglycerides (P=0.04 both). This is the first study to demonstrate that SNP haplotypes derived from allelic SNP combinations in the CETP gene were more informative than single SNPs in predicting the response to lipid-modifying therapy with statins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Vaughan CJ, Gotto Jr AM, Basson CT . The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol 2000; 35: 1–10.

    Article  CAS  Google Scholar 

  2. Tall A . Plasma lipid transfer proteins. Annu Rev Biochem 1995; 64: 235–257.

    Article  CAS  Google Scholar 

  3. Kuivenhoven JA, de Knijff P, Boer JM, Smalheer HA, Botma GJ, Seidell JC et al. Heterogeneity at the CETP gene locus. Influence on plasma CETP concentrations and HDL cholesterol levels. Arterioscler Thromb Vasc Biol 1997; 17: 560–568.

    Article  CAS  Google Scholar 

  4. Kuivenhoven JA, Jukema JW, Zwinderman AH, de Knijff P, McPherson R, Bruschke AV et al. The role of a common variant of the cholesteryl ester transfer protein gene in the progression of coronary atherosclerosis. The Regression Growth Evaluation Statin Study Group. N Engl J Med 1998; 338: 86–93.

    Article  CAS  Google Scholar 

  5. Dullaart RP, Hoogenberg K, Riemens SC, Groener JE, van Tol A, Sluiter WJ et al. Cholesteryl ester transfer protein gene polymorphism is a determinant of HDL cholesterol and of the lipoprotein response to a lipid-lowering diet in type 1 diabetes. Diabetes 1997; 46: 2082–2087.

    Article  CAS  Google Scholar 

  6. Wallace AJ, Humphries SE, Fisher RM, Mann JI, Chisholm A, Sutherland WH . Genetic factors associated with response of LDL subfractions to change in the nature of dietary fat. Atherosclerosis 2000; 149: 387–394.

    Article  CAS  Google Scholar 

  7. Friedlander Y, Leitersdorf E, Vecsler R, Funke H . The contribution of candidate genes to the response of plasma lipids and lipoproteins to dietary challenge. Atherosclerosis 2000; 152: 239–248.

    Article  CAS  Google Scholar 

  8. Gudnason V, Kakko S, Nicaud V, Savolainen MJ, Kesaniemi YA, Tahvanainen E et al. Cholesteryl ester transfer protein gene effect on CETP activity and plasma high-density lipoprotein in European populations. The EARS Group. Eur J Clin Invest 1999; 29: 116–128.

    Article  CAS  Google Scholar 

  9. Agellon LB, Quinet EM, Gillette TG, Drayna DT, Brown ML, Tall AR . Organization of the human cholesteryl ester transfer protein gene. Biochemistry 1990; 29: 1372–1376.

    Article  CAS  Google Scholar 

  10. Agerholm-Larsen B, Nordestgaard BG, Steffensen R, Jensen G, Tybjaerg-Hansen A . Elevated HDL cholesterol is a risk factor for ischemic heart disease in white women when caused by a common mutation in the cholesteryl ester transfer protein gene. Circulation 2000; 101: 1907–1912.

    Article  CAS  Google Scholar 

  11. Agerholm-Larsen B, Tybjaerg-Hansen A, Schnohr P, Steffensen R, Nordestgaard BG . Common cholesteryl ester transfer protein mutations, decreased HDL cholesterol, and possible decreased risk of ischemic heart disease: the Copenhagen City Heart Study. Circulation 2000; 102: 2197–2203.

    Article  CAS  Google Scholar 

  12. Arai T, Yamashita S, Sakai N, Hirano K, Okada S, Ishigami M et al. A novel nonsense mutation (G181X) in the human cholesteryl ester transfer protein gene in Japanese hyperalphalipoproteinemic subjects. J Lipid Res 1996; 37: 2145–2154.

    CAS  PubMed  Google Scholar 

  13. Dachet C, Poirier O, Cambien F, Chapman J, Rouis M . New functional promoter polymorphism, CETP/−629, in cholesteryl ester transfer protein (CETP) gene related to CETP mass and high density lipoprotein cholesterol levels: role of Sp1/Sp3 in transcriptional regulation. Arterioscler Thromb Vasc Biol 2000; 20: 507–515.

    Article  CAS  Google Scholar 

  14. Kakko S, Tamminen M, Paivansalo M, Kauma H, Rantala AO, Lilja M et al. Cholesteryl ester transfer protein gene polymorphisms are associated with carotid atherosclerosis in men. Eur J Clin Invest 2000; 30: 18–25.

    Article  CAS  Google Scholar 

  15. Brown ML, Inazu A, Hesler CB, Agellon LB, Mann C, Whitlock ME et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 1989; 342: 448–451.

    Article  CAS  Google Scholar 

  16. Inazu A, Jiang XC, Haraki T, Yagi K, Kamon N, Koizumi J et al. Genetic cholesteryl ester transfer protein deficiency caused by two prevalent mutations as a major determinant of increased levels of high density lipoprotein cholesterol. J Clin Invest 1994; 94: 1872–1882.

    Article  CAS  Google Scholar 

  17. Takahashi K, Jiang XC, Sakai N, Yamashita S, Hirano K, Bujo H et al. A missense mutation in the cholesteryl ester transfer protein gene with possible dominant effects on plasma high density lipoproteins. J Clin Invest 1993; 92: 2060–2064.

    Article  CAS  Google Scholar 

  18. Zhong S, Sharp DS, Grove JS, Bruce C, Yano K, Curb JD et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest 1996; 97: 2917–2923.

    Article  CAS  Google Scholar 

  19. Kakko S, Tamminen M, Kesaniemi YA, Savolainen MJ . R451Q mutation in the cholesteryl ester transfer protein (CETP) gene is associated with high plasma CETP activity. Atherosclerosis 1998; 136: 233–240.

    Article  CAS  Google Scholar 

  20. Tamminen M, Kakko S, Kesaniemi YA, Savolainen MJ . A polymorphic site in the 3′ untranslated region of the cholesteryl ester transfer protein (CETP) gene is associated with low CETP activity. Atherosclerosis 1996; 124: 237–247.

    Article  CAS  Google Scholar 

  21. Yamashita S, Maruyama T, Hirano KI, Sakai N, Nakajima N, Matsuzawa Y . Molecular mechanisms, lipoprotein abnormalities and atherogenicity of hyperalpha-lipoproteinemia. Atherosclerosis 2000; 152: 271–285.

    Article  CAS  Google Scholar 

  22. McPherson R, Grundy SM, Guerra R, Cohen JC . Allelic variation in the gene encoding the cholesteryl ester transfer protein is associated with variation in the plasma concentrations of cholesteryl ester transfer protein. J Lipid Res 1996; 37: 1743–1748.

    CAS  PubMed  Google Scholar 

  23. Drysdale CM, McGraw DW, Stack CB, Stephens JC, Judson RS, Nandabalan K et al. Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci USA 2000; 97: 10483–10488.

    Article  CAS  Google Scholar 

  24. Knoblauch H, Bauerfeind A, Krähenbühl C, Daury A, Rohde K, Bejanin S et al. Common haplotypes in five genes influence genetic variance of LDL and HDL cholesterol in the general population. Hum Mol Genet 2002; 12: 1477–1485.

    Article  Google Scholar 

  25. Knopp RH . Drug treatment of lipid disorders. N Engl J Med 1999; 341: 498–511.

    Article  CAS  Google Scholar 

  26. Maron DJ, Fazio S, Linton RF . Current perspectives on statins. Circulation 2000; 101: 207–213.

    Article  CAS  Google Scholar 

  27. Sacks FM, for the expert group on HDL-cholesterol. The role of high-density lipoprotein (HDL) cholesterol in the prevention and treatment of coronary heart disease: expert group recommendations. Am J Cardiol 2002; 90: 139–143.

    Article  CAS  Google Scholar 

  28. Cheung MC, Zhao XQ, Chait A, Albers JJ, Brown BG . Antioxidant supplements block the response of HDL to simvastatin–niacin therapy in patients with coronary artery disease and low HDL. Arterioscler Thromb Vasc Biol 2001; 21: 1320–1326.

    Article  CAS  Google Scholar 

  29. Kuller LH . A time to stop prescribing antioxidant vitamins to prevent and treat heart disease? Arterioscler Thromb Vasc Biol 2001; 21: 1253.

    Article  CAS  Google Scholar 

  30. Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999; 341: 410–418.

    Article  CAS  Google Scholar 

  31. Ballantyne CM, Herd A, Ferlic LL, Dunn K, Farmer JA, Jones PH et al. Influence of low HDL on progression of coronary artery disease and response to fluvastatin therapy. Circulation 1999; 99: 736–743.

    Article  CAS  Google Scholar 

  32. Johnson GC, Esposito L, Barratt BJ, Smith AN, Heward J, Di Genova G et al. Haplotype tagging for the identification of common disease genes. Nat Genet 2001; 29: 233–237.

    Article  CAS  Google Scholar 

  33. Lu H, Inazu A, Moriyama Y, Higashikata T, Kawashiri M, Yu W et al. Haplotype analyses of cholesteryl ester transfer protein gene promoter a clue to an unsolved mystery of TaqIB polymorphism. J Mol Med 2003; 81: 246–255.

    Article  CAS  Google Scholar 

  34. Inazu A, Brown ML, Hesler CB, Agellon LB, Koizumi J, Takata K et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 1990; 323: 1234–1238.

    Article  CAS  Google Scholar 

  35. Fumeron F, Betoulle D, Luc G, Behague I, Ricard S, Poirier O et al. Alcohol intake modulates the effect of a polymorphism of the cholesteryl ester transfer protein gene on plasma high density lipoprotein and the risk of myocardial infarction. J Clin Invest 1995; 96: 1664–1671.

    Article  CAS  Google Scholar 

  36. Ordovas JM, Cupples LA, Corella D, Otvos JD, Osgood D, Martinez A et al. Association of cholesteryl ester transfer protein–TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham study. Arterioscler Thromb Vasc Biol 2000; 20: 1323–1329.

    Article  CAS  Google Scholar 

  37. Corella D, Saiz C, Guillen M, Portoles O, Mulet F, Gonzalez JI et al. Association of TaqIB polymorphism in the cholesteryl ester transfer protein gene with plasma lipid levels in a healthy Spanish population. Atherosclerosis 2000; 152: 367–376.

    Article  CAS  Google Scholar 

  38. Freeman DJ, Griffin BA, Holmes AP, Lindsay GM, Gaffney D, Packard CJ et al. Regulation of plasma HDL cholesterol and subfraction distribution by genetic and environmental factors. Associations between the TaqI B RFLP in the CETP gene and smoking and obesity. Arterioscler Thromb 1994; 14: 336–344.

    Article  CAS  Google Scholar 

  39. Kauma H, Savolainen MJ, Heikkila R, Rantala AO, Lilja M, Reunanen A et al. Sex difference in the regulation of plasma high density lipoprotein cholesterol by genetic and environmental factors. Hum Genet 1996; 97: 156–162.

    Article  CAS  Google Scholar 

  40. Marcel YL, McPherson R, Hogue M, Czarnecka H, Zawadzki Z, Weech PK et al. Distribution and concentration of cholesteryl ester transfer protein in plasma of normolipemic subjects. J Clin Invest 1990; 85: 10–17.

    Article  CAS  Google Scholar 

  41. Freeman DJ, Griffin BA, Murray E, Lindsay GM, Gaffney D, Packard CJ et al. Smoking and plasma lipoproteins in man: effects on low density lipoprotein cholesterol levels and high density lipoprotein subfraction distribution. Eur J Clin Invest 1993; 23: 630–640.

    Article  CAS  Google Scholar 

  42. Meguro S, Takei I, Murata M, Hirose H, Takei N, Mitsuyoshi Y et al. Cholesteryl ester transfer protein polymorphism associated with macroangiopathy in Japanese patients with type 2 diabetes. Atherosclerosis 2001; 156: 151–156.

    Article  CAS  Google Scholar 

  43. Pedro-Botet J, Schaefer ES, Bakker-Arkema RG, Black DM, Stein EM, Corella D et al. Apolipoprotein E genotype affects plasma lipid response to atorvastatin in a gender specific manner. Atherosclerosis 2001; 158: 183–193.

    Article  CAS  Google Scholar 

  44. Pena R, Lahoz C, Mostaza JM, Jiménez J, Subirats E, Pintó X et al. RAP study group. Effect of apoE genotype on the hypolipidaemic response to pravastatin in an outpatient setting. J Intern Med 2002; 251: 518–525.

    Article  CAS  Google Scholar 

  45. Drmanac S, Heilbron DC, Pullinger CR, Jafari M, Gietzen D, Ukrainczyk T et al. Elevated baseline triglyceride levels modulate effects of HMGCoA reductase inhibitors on plasma lipoproteins. J Cardiovasc Ther 2001; 6: 47–56.

    Article  CAS  Google Scholar 

  46. Talmud PJ, Hawe E, Robertson K, Miller GJ, Miller NE, Humphries SE . Genetic and environmental determinants of plasma high density lipoprotein cholesterol and apolipoprotein AI concentration in healthy middle-aged men. Ann Hum Genet 2002; 66: 111–124.

    Article  CAS  Google Scholar 

  47. Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD et al. HDL cholesterol and cardiovascular disease: four prospective American studies. Circulation 1989; 79: 8–15.

    Article  CAS  Google Scholar 

  48. Barter PJ, Rye KA . High-density lipoproteins and coronary heart disease. Atherosclerosis 1996; 121: 1–12.

    Article  CAS  Google Scholar 

  49. Aguilar-Salinas SA, Barnett H, Schonfeld G . Metabolic modes of action of statins in the hyperlipoproteinemias. Atherosclerosis 1998; 141: 203–207.

    Article  CAS  Google Scholar 

  50. Winkelmann BR, März W, Boehm BO, Zotz R, Hager J, Hellstern P et al. Rationale and design of the LURIC study—a resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease. Pharmacogenomics 2001; 2(Suppl 1): S1–S73.

    Article  CAS  Google Scholar 

  51. Lipid Research Clinics Program: Manual of laboratory operation. Lipid and lipoprotein analysis 1[no. 75-628 (NIH)], 1-81. 1974. Washington, DC, US. Department of Health, Education and Welfare, US Government Printing Office.

  52. Wanner C, Horl WH, Luley CH, Wieland H . Effects of HMG-CoA reductase inhibitors in hypercholesterolemic patients on hemodialysis. Kidney Int 1991; 39: 754–760.

    Article  CAS  Google Scholar 

  53. Stephens JC, Schneider JA, Tanguay DA, Choi J, Acharya T, Stanley SE et al. Haplotype variation and linkage disequilibrium in 313 human genes. Science 2001; 293: 489–493.

    Article  CAS  Google Scholar 

  54. Clark AG . Inference of haplotypes from PCR-amplified samples of diploid populations. Mol Biol Evol 1990; 7: 111–122.

    CAS  Google Scholar 

  55. Judson R, Salisbury B, Schneider J, Windemuth A, Stephens JC . How Many SNPs does a genome-wide haplotype map require? Pharmacogenomics 2002; 3: 379–391.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the LURIC study team and the laboratory staff at Ludwigshafen and Freiburg, Germany for their assistance in patient recruitment and laboratory analyses. Hubert Scharnagl, Freiburg, is acknowledged for the determination of CETP mass; furthermore, we thank the following employees from Genaissance Pharmaceuticals for their contributions to this project: Hongyu Zhao for statistical input and recommendation of the permutation-based, multiple comparison adjustment method; Cathy Stack and Bradley Dain for the statistical analysis; Mark Rabin, and Jennifer Bourne for genotyping; Chad Messer and Carol Reed for review of the manuscript and Anita Kaul for editorial assistance. This work has been partly funded by a research grant from Genaissance Pharmaceuticals, Inc., New Haven, CT, USA. Bernhard Boehm has been supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B R Winkelmann.

Additional information

DUALITY OF INTEREST

BRW, ART have worked as a consultant for Genaissance Pharmaceuticals Inc. and have received honoraria for such work. WM, BOB have stock ownership in Genaissance Pharmaceuticals Inc. AMK, KN, RSJ, GR own stock or stock options in Genaissance Pharmaceuticals Inc. as part of their employee compensation plan.

Travel grants were provided by Genaissance Pharmaceuticals to BRW, MMH, and WM for meetings at the company head quarters (New Haven, CT U.S.A.), or to present results at a symposium (BRW). BRW, WM, MMH have been named as co-inventors on patent applications owned by Genaissance Pharmaceuticals Inc. in work related to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkelmann, B., Hoffmann, M., Nauck, M. et al. Haplotypes of the cholesteryl ester transfer protein gene predict lipid-modifying response to statin therapy. Pharmacogenomics J 3, 284–296 (2003). https://doi.org/10.1038/sj.tpj.6500195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500195

Keywords

This article is cited by

Search

Quick links