Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A complicated relationship: fulfilling the interactive needs of the T lymphocyte and the dendritic cell

Abstract

T cells recognize antigenic peptides displayed on the surface of MHC-bearing antigen-presenting cells (APCs), and with sufficient costimulation become activated. However, the ability of an APC (even bearing the correct peptide) to initiate and fulfill the requirements for T cell activation is not easily achieved. Naive T cells use multiple copies of a single receptor to survey the vast array of peptides presented on an APC, and require multiple receptor engagements to initiate T cell activation. Dendritic cells (DCs) are specialized cells with optimal capabilities for priming naive CD4+ T cells. Activation occurs, after initial antigen recognition by T cells, followed by a rapid dialogue between the T cells and the DCs. The resulting changes in both the cytoskeleton and the expression or regulation of cell-surface molecules on both cell types act to further strengthen engagement. In this report, we review the fundamentals of CD4+ T helper cell : DC interactions and discuss recent data concerning the molecular characteristics of this engagement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K . Immunobiology of dendritic cells Annu Rev Immunol 2000 18: 767–811

    CAS  PubMed  Google Scholar 

  2. Sozzani S, Allavena P, Vecchi A, Mantovani A . The role of chemokines in the regulation of dendritic cell trafficking J Leukoc Biol 1999 66: 1–9

    CAS  PubMed  Google Scholar 

  3. Saeki H, Moore AM, Brown MJ, Hwang ST . Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes J Immunol 1999 162: 2472–2475

    CAS  PubMed  Google Scholar 

  4. Sallusto F, Sxhaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A . Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation Eur J Immunol 1998 28: 2760–2769

    CAS  PubMed  Google Scholar 

  5. Knight SC, Stagg AJ . Antigen-presenting cell types Curr Opin Immunol 1993 5: 374–382

    CAS  PubMed  Google Scholar 

  6. Melchers F, Rolink A, Grawunder U, Winkler TH, Karasuyama H, Ghia P, Andersson J . Positive and negative selection events during B lymphopoiesis Curr Opin Immunol 1995 7: 214–227

    CAS  PubMed  Google Scholar 

  7. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell Nature 1998 393: 474–478

    CAS  PubMed  Google Scholar 

  8. Hauss P, Selz F, Cavazzana-Calvo M, Fischer A . Characteristics of antigen-independent and antigen-dependent interaction of dendritic cells with CD4+ T cells Eur J Immunol 1995 25: 2285–2294

    CAS  PubMed  Google Scholar 

  9. Flechner ER, Freudenthal PS, Kaplan G, Steinman RM . Antigen-specific T lymphocytes efficiently cluster with dendritic cells in the human primary mixed-leukocyte reaction Cell Immunol 1988 111: 183–195

    CAS  PubMed  Google Scholar 

  10. Inaba K, Steinman RM . Accessory cell-T lymphocyte interactions. Antigen-dependent and -independent clustering J Exp Med 1986 163: 247–261

    CAS  PubMed  Google Scholar 

  11. Galkowska H, Olszewski WL . Immune events in skin. I. Spontaneous cluster formation of dendritic (veiled) cells and lymphocytes from skin lymph Scand J Immunol 1992 35: 727–734

    CAS  PubMed  Google Scholar 

  12. Starling GC, McLellan AD, Egner W, Sorg RV, Fawcett J, Simmons DL, Hart DN . Intercellular adhesion molecule-3 is the predominant co-stimulatory ligand for leukocyte function antigen-1 on human blood dendritic cells Eur J Immunol 1995 25: 2528–2532

    CAS  PubMed  Google Scholar 

  13. Hart DN . Dendritic cells: unique leukocyte populations which control the primary immune response Blood 1997 90: 3245–3287

    CAS  PubMed  Google Scholar 

  14. Scheeren RA, Koopman G, Van der Baan S, Meijer CJ, Pals ST . Adhesion receptors involved in clustering of blood dendritic cells and T lymphocytes Eur J Immunol 1991 21: 1101–1105

    CAS  PubMed  Google Scholar 

  15. Hart DN, Prickett TC . Intercellular adhesion molecule-2 (ICAM-2) expression on human dendritic cells Cell Immunol 1993 148: 447–454

    CAS  PubMed  Google Scholar 

  16. Geijtenbeek TB, Engering A, Van Kooyk Y . DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology J Leukoc Biol 2002 71: 921–931

    CAS  PubMed  Google Scholar 

  17. Geijtenbeek TB, Krooshoop DJ, Bleijs DA, van Vliet SJ, van Djijnhoven GC, Grabovsky V, Alon R, Figdor CG, van Kooyk Y . DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking Nat Immunol 2000 1: 353–357

    CAS  PubMed  Google Scholar 

  18. Engering A, Geijtenbeek TB, van Vliet SJ, Wijers M, van Liempt E, Demaurex N, Lanzavecchia A, Fransen J, Figdor CG, Piguet V, van Kooyk Y . The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells J Immunol 2002 168: 2118–2126

    CAS  PubMed  Google Scholar 

  19. Delon J, Bercovici N, Rapsos G, Liblau R, Trautmann A . Antigen-dependent and -independent Ca2+ responses triggered in T cells by dendritic cells compared with B cells J Exp Med 1998 188: 1473–1484

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Metlay JP, Pure E, Steinman RM . Distinct features of dendritic cells and anti-Ig activated B cells as stimulators of the primary mixed leukocyte reaction J Exp Med 1989 169: 239–254

    CAS  PubMed  Google Scholar 

  21. Brocker T . Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells J Exp Med 1997 186: 1223–1232

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Takeda S, Rodewald HR, Arakawa H, Bluethmann H, Shimizu T . MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span Immunity 1996 5: 217–228

    CAS  PubMed  Google Scholar 

  23. Witherden D, van Oers N, Waltzinger C, Weiss A, Benoist C, Mathis D . Tetracycline-controllable selection of CD4(+) T cells: half-life and survival signals in the absence of major histocompatibility complex class II molecules J Exp Med 2000 191: 355–364

    CAS  PubMed  Google Scholar 

  24. Revy P, Sospedra M, Barbour B, Trautmann A . Functional antigen-independent synapses formed between T cells and dendritic cells Nat Immunol 2001 2: 925–931

    CAS  PubMed  Google Scholar 

  25. Labrecque N, Whitfield LS, Obst R, Waltzinger C, Benoist C, Mathis D . How much TCR does a T cell need? Immunity 2001 15: 71–82

    CAS  PubMed  Google Scholar 

  26. Lanzavecchia A, Sallusto F . The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics Curr Opin Immunol 2001 13: 291–298

    CAS  PubMed  Google Scholar 

  27. Albert ML, Jegathesan M, Darnell RB . Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells Nat Immunol 2001 2: 1010–1017

    CAS  PubMed  Google Scholar 

  28. Shortman K, Heath WR . Immunity or tolerance? That is the question for dendritic cells Nat Immunol 2001 2: 988–989

    CAS  PubMed  Google Scholar 

  29. Schwartz RH . Models of T cell anergy: is there a common molecular mechanism? J Exp Med 1996 184: 1–8

    CAS  PubMed  Google Scholar 

  30. Cochran JR, Aivazian D, Cameron TO, Stern LJ . Receptor clustering and transmembrane signaling in T cells Trends Biochem Sci 2001 26: 304–310

    CAS  PubMed  Google Scholar 

  31. Chambers CA, Allison JP . Co-stimulation in T cell responses Curr Opin Immunol 1997 9: 396–404

    CAS  PubMed  Google Scholar 

  32. Chambers CA . The expanding world of co-stimulation: the two-signal model revisited Trends Immunol 2001 22: 217–223

    CAS  PubMed  Google Scholar 

  33. Fagnoni FF, Takamizawa M, Godfrey WR, Rivas A, Azuma M, Okumura K, Engleman EG . Role of B70/B7-2 in CD4+ T cell immune responses induced by dendritic cells Immunology 1995 85: 467–744

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McLellan AD, Sorg RV, Williams LA, Hart DN . Human dendritic cells activate T lymphocytes via a CD40: CD40 ligand-dependent pathway Eur J Immunol 1996 26: 1204–1210

    CAS  PubMed  Google Scholar 

  35. Shahinian A, Pfeffer K, Lee KP, Kundig TM, Kishihara K, Wakeham A, Kawai K, Ohashi PS, Tjompson CB, Mak TW . Differential T cell costimulatory requirements in CD28-deficient mice Science 1993 261: 609–612

    CAS  PubMed  Google Scholar 

  36. Mittrucker HW, Shahinian A, Bouchard D, Kundig TM, Mak TW . Induction of unresponsiveness and impaired T cell expansion by staphylococcal enterotoxin B in CD28-deficient mice J Exp Med 1996 183: 2481–2488

    CAS  PubMed  Google Scholar 

  37. Lucas PJ, Negishi I, Nakayama K, Fields LE, Loh DY . Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response J Immunol 1995 154: 5757–5768

    CAS  PubMed  Google Scholar 

  38. Calderhead DM, Buhlamnn JE, van den Eertwegh AJ, Claassen E, Noelle RJ, Fell HP . Cloning of mouse Ox40: a T cell activation marker that may mediate T-B cell interactions J Immunol 1993 151: 5261–5271

    CAS  PubMed  Google Scholar 

  39. Godfrey WR, Fagnoni FF, Harara MA, Buck D, Engleman EG . Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor J Exp Med 1994 180: 757–762

    CAS  PubMed  Google Scholar 

  40. Stuber E, Neurath M, Calderhead D, Fell HP, Strober W . Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells Immunity 1995 2: 507–521

    CAS  PubMed  Google Scholar 

  41. Vinay DS, Kwon BS . Role of 4-1BB in immune responses Semin Immunol 1998 10: 481–489

    CAS  PubMed  Google Scholar 

  42. DeBenedette MA, Shahinian A, Mak TW, Watts TH . Costimulation of CD28− T lymphocytes by 4-1BB ligand J Immunol 1997 158: 551–559

    CAS  PubMed  Google Scholar 

  43. Blazar BR, Kwon BS, Panoskaltsis-Mortari A, Kwak KB, Peschon JJ, Taylor PA . Ligation of 4-1BB (CDw137) regulates graft-versus-host disease, graft-versus-leukemia, and graft rejection in allogeneic bone marrow transplant recipients J Immunol 2001 166: 3174–3183

    CAS  PubMed  Google Scholar 

  44. Cocks BG, Chang CC, Carballido JM, Yssel H, de Vries JE, Aversa G . A novel receptor involved in T cell activation Nature 1995 376: 260–263

    CAS  PubMed  Google Scholar 

  45. Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, van Schaik S, Notarangelo L, Geha R, Roncarolo MG, Oettgen H, De Vries JE, Aversa G, Terhorst C . The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM Nature 1998 395: 462–469

    CAS  PubMed  Google Scholar 

  46. Aversa G, Chang CC, Carballido JM, Cocks BG, de Vries JE . Engagement of the signaling lymphocytic activation molecule (SLAM) on activated T cells results in IL-2-independent cyclosporin, A-sensitive T cell proliferation and IFN-gamma production J Immunol 1997 158: 4036–4044

    CAS  PubMed  Google Scholar 

  47. Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS . Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement Immunity 1996 4: 535–543

    CAS  PubMed  Google Scholar 

  48. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH . Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4 Immunity 1995 3: 541–547

    CAS  PubMed  Google Scholar 

  49. Gett AV, Hodgkin PD . A cellular calculus for signal integration by T cells Nat Immunol 2000 1: 239–244

    CAS  PubMed  Google Scholar 

  50. van Stipdonk MJ, Lemmens EE, Schoenberger SP . Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation Nat Immunol 2001 2: 423–429

    CAS  PubMed  Google Scholar 

  51. Grewal IS, Foellmer HG, Grewal KD, Xu J, Hardardottir F, Baron JL, Janeway Jr CA, Flavell RA . Requirement for CD40 ligand in costimulation induction, T cell activation, and experimental allergic encephalomyelitis Science 1996 273: 1864–1867

    CAS  PubMed  Google Scholar 

  52. Yang Y, Wilson JM . CD40 ligand-dependent T cell activation: requirement of B7-CD28 signaling through CD40 Science 1996 273: 1862–1864

    CAS  PubMed  Google Scholar 

  53. McLellan AD, Starling GC, Williams LA, Hock BD, Hart DN . Activation of human peripheral blood dendritic cells induces the CD86 co-stimulatory molecule Eur J Immunol 1995 25: 2064–2068

    CAS  PubMed  Google Scholar 

  54. Bennett SR, Carbone FR, Karamalis F, Miller JF, Heath WR . Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help J Exp Med 1997 186: 65–70

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mitchison NA, O'Malley C . Three-cell-type clusters of T cells with antigen-presenting cells best explain the epitope linkage and noncognate requirements of the in vivo cytolytic response Eur J Immunol 1987 17: 1579–1583

    CAS  PubMed  Google Scholar 

  56. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A . Three-dimensional segregation of supramolecular activation clusters in T cells Nature 1998 395: 82–86

    CAS  PubMed  Google Scholar 

  57. Grakoui Am, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML . The immunological synapse: a molecular machine controlling T cell activation Science 1999 285: 221–227

    CAS  PubMed  Google Scholar 

  58. Batista FD, Iber D, Neuberger MS . B cells acquire antigen from target cells after synapse formation Nature 2001 411: 489–494

    CAS  PubMed  Google Scholar 

  59. Lanzavecchia A, Sallusto F . Antigen decoding by T lymphocytes: from synapses to fate determination Nat Immunol 2001 2: 487–492

    CAS  PubMed  Google Scholar 

  60. Valitutti S, Dessing M, Aktories K, Gallati H, Lanzavecchia A . Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton J Exp Med 1995 181: 577–584

    CAS  PubMed  Google Scholar 

  61. Valitutti S, Muller S, Dessing M, Lanzavecchia A . Signal extinction and T cell repolarization in T helper cell-antigen-presenting cell conjugates Eur J Immunol 1996 26: 2012–2016

    CAS  PubMed  Google Scholar 

  62. Friedl P, Gunzer M . Interaction of T cells with APCs: the serial encounter model Trends Immunol 2001 22: 187–191

    CAS  PubMed  Google Scholar 

  63. Gunzer M, Schafer A, Borgmann S, Grabbe S, Zanker KS, Brocker EB, Kampgen E, Friedl P . Antigen presentation in extracellular matrix: interactions of T cells with dendritic cells are dynamic, short lived, and sequential Immunity 2000 13: 323–332

    CAS  PubMed  Google Scholar 

  64. van Der Merwe PA, Davis SJ . Immunology. The immunological synapse--a multitasking system Science 2002 295: 1479–1480

    CAS  PubMed  Google Scholar 

  65. Lee KH, Holdorf AD, Dustin ML, Chan AC, Allen PM, Shaw AS . T cell receptor signaling precedes immunological synapse formation Science 2002 295: 1539–1542

    CAS  PubMed  Google Scholar 

  66. Cochran JR, Cameron TO, Stern LJ . The relationship of MHC–peptide binding and T cell activation probed using chemically defined MHC class II oligomers Immunity 2000 12: 241–250

    CAS  PubMed  Google Scholar 

  67. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC . Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1 Nature 1993 364: 33–39

    CAS  PubMed  Google Scholar 

  68. Delon J . The immunological synapse Curr Biol 2000 10: R214

    CAS  PubMed  Google Scholar 

  69. Delon J, Germain RN . Information transfer at the immunological synapse Curr Biol 2000 10: R923–R933

    CAS  PubMed  Google Scholar 

  70. Fernandez-Miguel G, Alarcon B, Iglesias A, Bluethmann H, Alvarez-Mon M, Sanz E, de la Hera A . Multivalent structure of an alphabetaT cell receptor Proc Natl Acad Sci USA 1999 96: 1547–1552

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Shaw AS, Dustin ML . Making the T cell receptor go the distance: a topological view of T cell activation Immunity 1997 6: 361–369

    CAS  PubMed  Google Scholar 

  72. Krummel MF, Sjaastad MD, Wulfing C, Davis MM . Differential clustering of CD4 and CD3zeta during T cell recognition Science 2000 289: 1349–1352

    CAS  PubMed  Google Scholar 

  73. Bretscher A, Chambres D, Nguyen R, Reczek D . ERM-Merlin and EBP50 protein families in plasma membrane organization and function Annu Rev Cell Dev Biol 2000 16: 113–143

    CAS  PubMed  Google Scholar 

  74. Delon J, Kaibuchi K, Germain RN . Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin Immunity 2001 15: 691–701

    CAS  PubMed  Google Scholar 

  75. Pingel JT, Thomas ML . Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation Cell 1989 58: 1055–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Simons K, Ikonen E . Functional rafts in cell membranes Nature 1997 387: 569–572

    CAS  PubMed  Google Scholar 

  77. Brown DA, London E . Functions of lipid rafts in biological membranes Annu Rev Cell Dev Biol 1998 14: 111–136

    CAS  PubMed  Google Scholar 

  78. Dykstra M, Cherukuri A, Pierce SK . Rafts and synapses in the spatial organization of immune cell signaling receptors J Leukoc Biol 2001 70: 699–707

    CAS  PubMed  Google Scholar 

  79. Anderson HA, Hiltbold EM, Roche PA . Concentration of MHC class II molecules in lipid rafts facilitates antigen presentation Nat Immunol 2000 1: 156–162

    CAS  PubMed  Google Scholar 

  80. Vidalain PO, Azocar O, Servet-Delprat C, Rabourdin-Combe C, Gerlier D, Manie S . CD40 signaling in human dendritic cells is initiated within membrane rafts EMBO J 2000 19: 3304–3313

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Coombes BK, Mahony JB . Dendritic cell discoveries provide new insight into the cellular immunobiology of DNA vaccines Immunol Lett 2001 78: 103–111

    CAS  PubMed  Google Scholar 

  82. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S . A Toll-like receptor recognizes bacterial DNA Nature 2000 408: 740–745

    CAS  PubMed  Google Scholar 

  83. Corr M, Lee DJ, Carson DA, Tighe H . Gene vaccination with naked plasmid DNA: mechanism of CTL priming J Exp Med 1996 184: 1555–1560

    CAS  PubMed  Google Scholar 

  84. Condon C, Watkins SC, Celluzzi CM, Thompson K, Falo LD . DNA-based immunization by in vivo transfection of dendritic cells Nat Med 1996 2: 1122–1128

    CAS  PubMed  Google Scholar 

  85. Lynch RG, Rohrer JW, Odermatt B, Gebel HM, Autry JR, Hoover RG . Immunoregulation of murine myeloma cell growth and differentiation: a monoclonal model of B cell differentiation Immunol Rev 1979 48: 45–80

    CAS  PubMed  Google Scholar 

  86. Hsu FJ, Kwak L, Campbell M, Liles T, Czerwinski D, Haet S, Syrengelas A, Miller R, Levy R . Clinical trials of idiotype-specific vaccine in B-cell lymphomas Ann NY Acad Sci 1993 690: 385–387

    CAS  PubMed  Google Scholar 

  87. Maloney DG, Kaminski MS, Burowski D, Haimovich J, Levy R . Monoclonal anti-idiotype antibodies against the murine B cell lymphoma 38C13: characterization and use as probes for the biology of the tumor in vivo and in vitro Hybridoma 1985 4: 191–209

    CAS  PubMed  Google Scholar 

  88. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R . Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells Nat Med 1996 2: 52–58

    CAS  PubMed  Google Scholar 

  89. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D . Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells Nat Med 1998 4: 328–332

    CAS  PubMed  Google Scholar 

  90. Lotze MT, Hellerstedt B, Stolinski L, Tueting T, Wilson C, Kinzler D, Vu H, Rubin JT, Storkus W, Tahara H, Elder E, Whiteside T . The role of interleukin-2, interleukin-12, and dendritic cells in cancer therapy Cancer J Sci Am 1997 3: (Suppl 1) S109–S114

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Edgar Engleman for comments and reviewing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CG Fathman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McBride, J., Fathman, C. A complicated relationship: fulfilling the interactive needs of the T lymphocyte and the dendritic cell. Pharmacogenomics J 2, 367–376 (2002). https://doi.org/10.1038/sj.tpj.6500145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500145

Keywords

This article is cited by

Search

Quick links