Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Novel IL-15 isoforms generated by alternative splicing are expressed in the intestinal epithelium

Abstract

Previous studies have identified mRNA three isoforms encoding interleukin-15 (IL-15) that are produced through differential splicing and encode for the same mature IL-15 protein with two different signal peptides. Our analysis of mouse intestinal epithelial cells revealed two new IL-15 mRNA isoforms generated by different alternative splicing events. In one form (IL-15ΔE6), exon 6 is absent, and in the second form the first 48 nt of exon 7 are absent (IL-15ΔE7) through usage of an alternative 5′ splicing site within exon 7. These mRNA isoforms encoded in-frame IL-15 protein variants lacking either 15aa (IL-15ΔE6) or 16aa (IL-15ΔE7) both utilizing the normal long signal peptide. Significant structural changes were predicted for these new IL-15 isoforms. RNAse protection assays revealed the highest expression of isoform mRNA in the intestinal epithelium and functional analysis of recombinant IL-15 isoform proteins suggested possible regulatory functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Waldmann TA . T-cell receptors for cytokines: targets for immunotherapy of leukemia/lymphoma. Ann Oncol 2000; 11 (Suppl 1): 101–106.

    Article  Google Scholar 

  2. Schluns KS, Stoklasek T, Lefrancois L . The roles of interleukin-15 receptor alpha: trans-presentation, receptor component, or both? Int J Biochem Cell Biol 2005; 37: 1567–1571.

    Article  CAS  Google Scholar 

  3. Burton JD, Bamford RN, Peters C, Grant AJ, Kurys G, Goldman CK et al. A lymphokine, provisionally designated interleukin-T and produced by a human adult T-cell leukemia line, stimulates T-cell proliferation and the induction of lymphokine-activated killer-cells. Proc Natl Acad Sci USA 1994; 91: 4935–4939.

    Article  CAS  Google Scholar 

  4. Bamford RN, Grant AJ, Burton JD, Peters C, Kurys G, Goldman CK et al. The interleukin (Il)-2 receptor-beta chain is shared by Il-2 and a cytokine, provisionally designated Il-T, that stimulates T-cell proliferation and the induction of lymphokine-activated killer-cells. Proc Natl Acad Sci USA 1994; 91: 4940–4944.

    Article  CAS  Google Scholar 

  5. Carson WE, Giri JG, Lindemann MJ, Linett ML, Ahdieh M, Paxton R et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med 1994; 180: 1395–1403.

    Article  CAS  Google Scholar 

  6. Armitage RJ, Macduff BM, Eisenman J, Paxton R, Grabstein KH . IL-15 has stimulatory activity for the induction of B cell proliferation and differentiation. J Immunol 1995; 154: 483–490.

    CAS  PubMed  Google Scholar 

  7. Koka R, Burkett PR, Chien M, Chai S, Chan F, Lodolce JP et al. Interleukin (IL)-15R[alpha]-deficient natural killer cells survive in normal but not IL-15R[alpha]-deficient mice. J Exp Med 2003; 197: 977–984.

    Article  CAS  Google Scholar 

  8. Minagawa M, Watanabe H, Miyaji C, Tomiyama K, Shimura H, Ito A et al. Enforced expression of Bcl-2 restores the number of NK cells, but does not rescue the impaired development of NKT cells or intraepithelial lymphocytes, in IL-2/IL-15 receptor beta-chain-deficient mice. J Immunol 2002; 169: 4153–4160.

    Article  CAS  Google Scholar 

  9. Ranson T, Vosshenrich CA, Corcuff E, Richard O, Laloux V, Lehuen A et al. IL-15 availability conditions homeostasis of peripheral natural killer T cells. Proc Natl Acad Sci USA 2003; 100: 2663–2668.

    Article  CAS  Google Scholar 

  10. Ranson T, Vosshenrich CA, Corcuff E, Richard O, Muller W, Di Santo JP . IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 2003; 101: 4887–4893.

    Article  CAS  Google Scholar 

  11. Prlic M, Blazar BR, Farrar MA, Jameson SC . In vivo survival and homeostatic proliferation of natural killer cells. J Exp Med 2003; 197: 967–976.

    Article  CAS  Google Scholar 

  12. Schluns KS, Nowak EC, Cabrera-Hernandez A, Puddington L, Lefrancois L, Aguila HL . Distinct cell types control lymphoid subset development by means of IL-15 and IL-15 receptor alpha expression. Proc Natl Acad Sci USA 2004; 101: 5616–5621.

    Article  CAS  Google Scholar 

  13. Zhang X, Sun S, Hwang I, Tough DF, Sprent J . Potent and selective stimulation of memory-phenotype CD8+ T cell in vivo by IL-15. Immunity 1998; 8: 591–599.

    Article  CAS  Google Scholar 

  14. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M et al. Reversible defects in natural killer and memory CD8T cell lineages in Interleukin-15-deficient mice. J Exp Med 2000; 191: 771–780.

    Article  CAS  Google Scholar 

  15. Berard M, Brandt K, Paus SB, Tough DF . IL-15 promotes the survival of naive and memory phenotype CD8(+) T cells. J Immunol 2003; 170: 5018–5026.

    Article  CAS  Google Scholar 

  16. Burkett PR, Koka R, Chien M, Chai S, Chan F, Ma A et al. IL-15Ralpha expression on CD8+ T cells is dispensable for T cell memory. Proc Natl Acad Sci USA 2003; 100: 4724–4729.

    Article  CAS  Google Scholar 

  17. Schluns KS, Williams K, Ma A, Zheng XX, Lefrançois L . Cutting Edge: Requirement for IL-15 in the generation of primary and memory antigen-specific CD8 T cells. J Immunol 2002; 168: 4827–4831.

    Article  CAS  Google Scholar 

  18. Yajima T, Nishimura H, Ishimitsu R, Watase T, Busch DH, Pamer EG et al. Overexpression of IL-15 in vivo increases antigen-driven memory CD8+ T cells following a microbe exposure. J Immunol 2002; 168: 1198–1203.

    Article  CAS  Google Scholar 

  19. Dubois S, Mariner J, Waldmann TA, Tagaya Y . IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 2002; 17: 537–547.

    Article  CAS  Google Scholar 

  20. Sandau MM, Schluns KS, Lefrancois L, Jameson SC . Cutting edge: transpresentation of IL-15 by bone marrow-derived cells necessitates expression of IL-15 and IL-15R alpha by the same cells. J Immunol 2004; 173: 6537–6541.

    Article  CAS  Google Scholar 

  21. Schluns KS, Klonowski KD, Lefrançois L . Trans-regulation of memory CD8 T cell prolferation by IL-15Rα+ bone marrow-derived cells. Blood 2004; 103: 988–994.

    Article  CAS  Google Scholar 

  22. Figueras M, Busquets S, Carbo N, Barreiro E, Almendro V, Argiles JM et al. Interleukin-15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour-bearing rats. FEBS Lett 2004; 569: 201–206.

    Article  CAS  Google Scholar 

  23. Argiles JM, Lopez-Soriano J, Almendro V, Busquets S, Lopez-Soriano FJ . Cross-talk between skeletal muscle and adipose tissue: a link with obesity? Med Res Rev 2005; 25: 49–65.

    Article  Google Scholar 

  24. Waldmann TA, Tagaya Y . The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 1999; 17: 19–49.

    Article  CAS  Google Scholar 

  25. Lynch KW . Consequences of regulated pre-mRNA splicing in the immune system. Nat Rev Immunol 2004; 4: 931–940.

    Article  CAS  Google Scholar 

  26. Zav'yalov VP, Denesyuk AI, White B, Yurovsky VV, Atamas SP, Korpela T . Molecular model of an alternative splice variant of human IL-4, IL-4 delta 2, a naturally occurring inhibitor of IL-4-stimulated T cell proliferation. Immunol Lett 1997; 58: 149–152.

    Article  CAS  Google Scholar 

  27. Denesyuk AI, Zav'yalov VP, Denessiouk KA, Korpela T . Molecular models of two competitive inhibitors, IL-2delta2 and IL-2delta3, generated by alternative splicing of human interleukin-2. Immunol Lett 1998; 60: 61–66.

    Article  CAS  Google Scholar 

  28. Bihl MP, Heinimann K, Rudiger JJ, Eickelberg O, Perruchoud AP, Tamm M et al. Identification of a novel IL-6 isoform binding to the endogenous IL-6 receptor. Am J Respir Cell Mol Biol 2002; 27: 48–56.

    Article  CAS  Google Scholar 

  29. Nishimura H, Washizu J, Nakamura N, Enomoto A, Yoshikai Y . Translational efficiency is up-regulated by alternative exon in murine IL-15 mRNA. J Immunol 1998; 160: 936–942.

    CAS  PubMed  Google Scholar 

  30. Tagaya Y, Burton JD, Miyamoto Y, Waldmann TA . Identification of a novel receptor/signal transduction pathway for IL- 15/T in mast cells. EMBO J 1996; 15: 4928–4939.

    Article  CAS  Google Scholar 

  31. Tagaya Y, Kurys G, Thies TA, Losi JM, Azimi N, Hanover JA et al. Generation of secretable and nonsecretable interleukin 15 isoforms through alternate usage of signal peptides. Proc Natl Acad Sci USA 1997; 94: 14444–14449.

    Article  CAS  Google Scholar 

  32. Meazza R, Verdiani S, Biassoni R, Coppolecchia M, Gaggero A, Orengo AM et al. Identification of a novel interleukin-15 (IL-15) transcript isoform generated by alternative splicing in human small cell lung cancer cell lines. Oncogene 1996; 12: 2187–2192.

    CAS  PubMed  Google Scholar 

  33. Anderson DM, Kumaki S, Ahdieh M, Bertles J, Tometsko M, Loomis A et al. Functional characterization of the human interleukin-15 receptor alpha chain and close linkage of IL15RA and IL2RA genes. J Biol Chem 1995; 270: 29862–29869.

    Article  CAS  Google Scholar 

  34. Tagaya Y, Kurys G, Thies TA, Losi JM, Azimi N, Hanover JA et al. Generation of secretable and nonsecretable interleukin 15 isoforms through alternate usage of signal peptides. Proc Natl Acad Sci USA 1997; 94: 14444–14449.

    Article  CAS  Google Scholar 

  35. Meazza R, Gaggero A, Neglia F, Basso S, Sforzini S, Pereno R et al. Expression of two interleukin-15 mRNA isoforms in human tumors does not correlate with secretion: role of different signal peptides. Eur J Immunol 1997; 27: 1049–1054.

    Article  CAS  Google Scholar 

  36. Reinecker HC, MacDermott RP, Mirau S, Dignass A, Podolsky DK . Intestinal epithelial cells both express and respond to interleukin 15. Gastroenterology 1996; 111: 1706–1713.

    Article  CAS  Google Scholar 

  37. Hirose K, Suzuki H, Nishimura H, Mitani A, Washizu J, Matsuguchi T et al. Interleukin-15 may be responsible for early activation of intestinal intraepithelial lymphocytes after oral infection with Listeria monocytogenes in rats. Infect Immun 1998; 66: 5677–5683.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hirose K, Nishimura H, Matsuguchi T, Yoshikai Y . Endogenous IL-15 might be responsible for early protection by natural killer cells against infection with an avirulent strain of Salmonella choleraesuis in mice. J Leukoc Biol 1999; 66: 382–390.

    Article  CAS  Google Scholar 

  39. Tsytsikov VN, Yurovsky VV, Atamas SP, Alms WJ, White B . Identification and characterization of two alternative splice variants of human interleukin-2. J Biol Chem 1996; 271: 23055–23060.

    Article  CAS  Google Scholar 

  40. Bernard J, Harb C, Mortier E, Quemener A, Meloen RH, Vermot-Desroches C et al. Identification of an interleukin-15alpha receptor-binding site on human interleukin-15. J Biol Chem 2004; 279: 24313–24322.

    Article  CAS  Google Scholar 

  41. Bamford RN, DeFilippis AP, Azimi N, Kurys G, Waldmann TA . The 5′ untranslated region, signal peptide, and the coding sequence of the carboxyl terminus of IL-15 participate in its multifaceted translational control. J Immunol 1998; 160: 4418–4426.

    CAS  PubMed  Google Scholar 

  42. Onu A, Pohl T, Krause H, Bulfone-Paus S . Regulation of IL-15 secretion via the leader peptide of two IL-15 isoforms. J Immunol 1997; 158: 255–262.

    CAS  PubMed  Google Scholar 

  43. Gaggero A, Azzarone B, Andrei C, Mishal Z, Meazza R, Zappia E et al. Differential intracellular trafficking, secretion and endosomal localization of two IL-15 isoforms. Eur J Immunol 1999; 29: 1265–1274.

    Article  CAS  Google Scholar 

  44. Giri JG, Kumaki S, Ahdieh M, Friend DJ, Loomis A, Shanebeck K et al. Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J 1995; 14: 3654–3663.

    Article  CAS  Google Scholar 

  45. Dubois S, Magrangeas F, Lehours P, Raher S, Bernard J, Boisteau O et al. Natural splicing of exon 2 of human interleukin-15 receptor alpha-chain mRNA results in a shortened form with a distinct pattern of expression. J Biol Chem 1999; 274: 26978–26984.

    Article  CAS  Google Scholar 

  46. Bulanova E, Budagian V, Orinska Z, Krause H, Paus R, Bulfone-Paus S . Mast cells express novel functional IL-15 receptor alpha isoforms. J Immunol 2003; 170: 5045–5055.

    Article  CAS  Google Scholar 

  47. Ma A, Boone DL, Lodolce JP . The pleiotropic functions of interleukin 15: not so interleukin 2-like after all. J Exp Med 2000; 191: 753–756.

    Article  CAS  Google Scholar 

  48. Zhao H, Nguyen H, Kang J . Interleukin 15 controls the generation of the restricted T cell receptor repertoire of gamma delta intestinal intraepithelial lymphocytes. Nat Immunol 2005; 6: 1263–1271.

    Article  CAS  Google Scholar 

  49. Ferrari-Lacraz S, Zanelli E, Neuberg M, Donskoy E, Kim YS, Zheng XX et al. Targeting IL-15 receptor-bearing cells with an antagonist mutant IL-15/Fc protein prevents disease development and progression in murine collagen-induced arthritis. J Immunol 2004; 173: 5818–5826.

    Article  CAS  Google Scholar 

  50. Ruckert R, Brandt K, Braun A, Hoymann HG, Herz U, Budagian V et al. Blocking IL-15 prevents the induction of allergen-specific T cells and allergic inflammation in vivo. J Immunol 2005; 174: 5507–5515.

    Article  Google Scholar 

  51. Yoshihara K, Yajima T, Kubo C, Yoshikai Y . Role of interleukin 15 in colitis induced by dextran sulphate sodium in mice. Gut 2006; 55: 334–341.

    Article  CAS  Google Scholar 

  52. Flint N, Cove FL, Evans GS . A low-temperature method for the isolation of small-intestinal epithelium along the crypt-villus axis. Biochem J 1991; 280: 331–334.

    Article  Google Scholar 

  53. Stoye J . Multiple sequence alignment with the Divide-and-Conquer method. Gene 1998; 211: GC45–GC56.

    Article  CAS  Google Scholar 

  54. Notredame C, Higgins DG, Heringa J . T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000; 302: 205–217.

    Article  CAS  Google Scholar 

  55. Combet C, Blanchet C, Geourjon C, Deleage G . NPS@: network protein sequence analysis. Trends Biochem Sci 2000; 25: 147–150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Lefrançois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, X., Lefrançois, L. Novel IL-15 isoforms generated by alternative splicing are expressed in the intestinal epithelium. Genes Immun 7, 407–416 (2006). https://doi.org/10.1038/sj.gene.6364314

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364314

Keywords

This article is cited by

Search

Quick links