Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interleukin-20 promotes angiogenesis in a direct and indirect manner

Abstract

IL-20 belongs to the IL-10 family and is involved in the pathogenesis of keratinocyte hyperproliferation in vivo. Endothelial cells express IL-20 receptors. To explore the function of IL-20 on endothelial cells, we treated human umbilical vein endothelial cells (HUVECs) and human microvascular endothelial cells (HMECs) with human IL-20 and analyzed its effect on endothelial cells. IL-20 induced proliferation of endothelial cells and the activity was specifically blocked by anti-human-IL-20 monoclonal antibody and soluble (s)IL-20 receptor (R)1 and sIL-20R2. An alternatively spliced variant of IL-20 was isolated and also was shown to induce proliferation of HUVECs and HMECs. Treatment of HUVECs with both IL-10 and IL-20 demonstrated that IL-10 antagonized the activity of IL-20 because it diminished IL-20-induced proliferation of HUVECs. IL-20 significantly induced HUVECs migration and vascular tube formation on Matrigel in vitro. In vivo, IL-20 also enhanced tumor angiogenesis. Incubation of IL-20 with HUVECs induced transcripts of bFGF, VEGF, MMP-2, MMP-9, and IL-8. Furthermore, incubation of HUVECs with IL-20 induced phosphorylation of ERK1/2, p38, and JNK. Thus, IL-20 is a pleiotropic cytokine and promotes angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Blumberg H, Conklin D, Xu WF, Grossmann A, Brender T, Carollo S et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 2001; 104: 9–19.

    Article  CAS  PubMed  Google Scholar 

  2. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB . Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 2004; 22: 929–979.

    Article  CAS  PubMed  Google Scholar 

  3. Fickenscher H, Hor S, Kupers H, Knappe A, Wittmann S, Sticht H . The interleukin-10 family of cytokines. Trends Immunol 2002; 23: 89–96.

    Article  CAS  PubMed  Google Scholar 

  4. Langer JA, Cutrone EC, Kotenko S . The Class II cytokine receptor (CRF2) family: overview and patterns of receptor–ligand interactions. Cytokine Growth Factor Rev 2004; 15: 33–48.

    Article  CAS  PubMed  Google Scholar 

  5. Wolk K, Kunz S, Asadullah K, Sabat R . Cutting edge: immune cells as sources and targets of the IL-10 family members? J Immunol 2002; 168: 5397–5402.

    Article  CAS  PubMed  Google Scholar 

  6. Liu L, Ding C, Zeng W, Heuer JG, Tetreault JW, Noblitt TW et al. Selective enhancement of multipotential hematopoietic progenitors in vitro and in vivo by IL-20. Blood 2003; 102: 3206–3209.

    Article  CAS  PubMed  Google Scholar 

  7. Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC . Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 2001; 167: 3545–3549.

    Article  CAS  PubMed  Google Scholar 

  8. Hiraoka N, Allen E, Apel IJ, Gyetko MR, Weiss SJ . Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 1998; 95: 365–377.

    Article  CAS  PubMed  Google Scholar 

  9. Chada S, Mhashilkar AM, Ramesh R, Mumm JB, Sutton RB, Bocangel D et al. Bystander activity of Ad-mda7: human MDA-7 protein kills melanoma cells via an IL-20 receptor-dependent but STAT3-independent mechanism. Mol Ther 2004; 10: 1085–1095.

    Article  CAS  PubMed  Google Scholar 

  10. Wang P, Wu P, Siegel MI, Egan RW, Billah MM . IL-10 inhibits transcription of cytokine genes in human peripheral blood mononuclear cells. J Immunol 1994; 153: 811–816.

    CAS  PubMed  Google Scholar 

  11. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O'Garra A . IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991; 147: 3815–3822.

    CAS  PubMed  Google Scholar 

  12. Cervenak L, Morbidelli L, Donati D, Donnini S, Kambayashi T, Wilson JL et al. Abolished angiogenicity and tumorigenicity of Burkitt lymphoma by interleukin-10. Blood 2000; 96: 2568–2573.

    CAS  PubMed  Google Scholar 

  13. Stearns ME, Rhim J, Wang M . Interleukin 10 (IL-10) inhibition of primary human prostate cell-induced angiogenesis: IL-10 stimulation of tissue inhibitor of metalloproteinase-1 and inhibition of matrix metalloproteinase (MMP)-2/MMP-9 secretion. Clin Cancer Res 1999; 5: 189–196.

    CAS  PubMed  Google Scholar 

  14. Ramesh R, Mhashilkar AM, Tanaka F, Saito Y, Branch CD, Sieger K et al. Melanoma differentiation-associated gene 7/interleukin (IL)-24 is a novel ligand that regulates angiogenesis via the IL-22 receptor. Cancer Res 2003; 63: 5105–5113.

    CAS  PubMed  Google Scholar 

  15. Chen WY, Cheng YC, Lei HY, Chang CP, Wang CW, Chang MS . IL-24 inhibits the growth of hepatoma cells in vivo. Genes Immun 2005; 6: 493–499.

    Article  CAS  PubMed  Google Scholar 

  16. Heuze-Vourc'h N, Liu M, Dalwadi H, Baratelli FE, Zhu L, Goodglick L et al. IL-20, an anti-angiogenic cytokine that inhibits COX-2 expression. Biochem Biophys Res Commun 2005; 333: 470–475.

    Article  CAS  PubMed  Google Scholar 

  17. Silvestre JS, Mallat Z, Duriez M, Tamarat R, Bureau MF, Scherman D et al. Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb. Circ Res 2000; 87: 448–452.

    Article  CAS  PubMed  Google Scholar 

  18. Asadullah K, Sterry W, Volk HD . Interleukin-10 therapy – review of a new approach. Pharmacol Rev 2003; 55: 241–269.

    Article  CAS  PubMed  Google Scholar 

  19. Schnaper HW, Grant DS, Stetler-Stevenson WG, Fridman R, D'Orazi G, Murphy AN et al. Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro. J Cell Physiol 1993; 156: 235–246.

    Article  CAS  PubMed  Google Scholar 

  20. Vu TH, Shipley JM, Bergers G, Berger JE, Helms JA, Hanahan D et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998; 93: 411–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wei CC, Chen WY, Chen PJ, Lee YJ, Wang DH, Chen WC et al. Detection of IL-20 and its receptors on psoriasis skin. Clin Immunol 2005; 117: 65–72.

    Article  CAS  PubMed  Google Scholar 

  22. Liao SC, Cheng YC, Wang YC, Wang CW, Yang SM, Yu CK et al. IL-19 induced Th2 cytokines and was up-regulated in asthma patients. J Immunol 2004; 173: 6712–6718.

    Article  CAS  PubMed  Google Scholar 

  23. Ma X, Ottino P, Bazan HEP, Bazan NG . Platelet-activating factor (PAF) induces corneal neovascularization and upregulates VEGF expression in endothelial cells. Invest Ophthalmol Vis Sci 2004; 45: 2915–2921.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from Chi-Mei Medical Center, Tainan, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-S Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, MY., Chen, WY., Jiang, MJ. et al. Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immun 7, 234–242 (2006). https://doi.org/10.1038/sj.gene.6364291

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364291

Keywords

This article is cited by

Search

Quick links