Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects

Abstract

Symptoms of human leishmaniasis range from subclinical to extensive systemic disease with splenomegaly, hepatomegaly, skin lesions, anemia and hyperglobulinemia, but the basis of this variation is unknown. Association of progression of the disease with Th2 lymphocyte response was reported in mice but not in humans. As most genetic studies in Leishmania major (L. major)-infected mice were restricted to skin lesions, we analyzed the symptomatology of leishmaniasis in mice by monitoring skin lesions, hepatomegaly, splenomegaly and seven immunological parameters. We detected and mapped 17 Leishmania major response (Lmr) gene loci that control the symptoms of infection. Surprisingly, the individual Lmr loci control 13 different combinations of pathological and immunological symptoms. Seven loci control both pathological and immunological parameters, 10 influence immunological parameters only. Moreover, the genetics of clinical symptoms is also very heterogeneous: loci Lmr13 and Lmr4 determine skin lesions only, Lmr5 and Lmr10 skin lesions and splenomegaly, Lmr14 and Lmr3 splenomegaly and hepatomegaly, Lmr3 (weakly) skin lesions, and Lmr15 hepatomegaly only. Only two immunological parameters, IgE and interferon-γ serum levels, correlate partly with clinical manifestations. These findings extend the paradigm for the genetics of host response to infection to include numerous genes, each controlling a different set of organ-specific and systemic effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Dedet J-P . Current status of epidemiology of leishmaniases. In: Farrell JP (ed). Leishmania. Kluwer Academic Publishers: Boston, Dordrecht, London, 2002, pp 1–10.

    Google Scholar 

  2. Lainson R, Shaw JJ . Evolution, classification and geographical distribution. In: Peters W, Killick-Kendrick R (eds). The Leishmaniases in Biology and Medicine, vol. I. Academic Press: London, 1987, pp 1–120.

    Google Scholar 

  3. McMahon-Pratt D, Alexander J . Does the Leishmania major paradigm of pathogenesis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol Rev 2004; 201: 206–224.

    Article  PubMed  Google Scholar 

  4. Zijlstra EE, Musa AM, Khalil EA, el-Hassan IM, el-Hassan AM . Post-kala-azar dermal leishmaniasis. Lancet Infect Dis 2003; 3: 87–98.

    Article  CAS  PubMed  Google Scholar 

  5. Berman JD . Human leishmaniasis: clinical, diagnostic, and chemotherapeutic development in the last 10 years. Clin Infect Dis 1997; 24: 684–703.

    Article  CAS  PubMed  Google Scholar 

  6. Herwaldt BL . Leishmaniasis. Lancet 1999; 354: 1191–1199.

    Article  CAS  PubMed  Google Scholar 

  7. Kaye PM . The immunology of visceral leishmaniasis: current status. In: Farrell JP (ed). Leishmania. Kluwer Academic Publishers: Boston, Dordrecht, London, 2002, pp 137–150.

    Chapter  Google Scholar 

  8. Reiner SL, Wang ZE, Hatam F, Scott P, Locksley RM . TH1 and TH2 cell antigen receptors in experimental leishmaniasis. Science 1993; 259: 1457–1460.

    Article  CAS  PubMed  Google Scholar 

  9. Sacks D, Noben-Trauth N . The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2002; 2: 845–858.

    Article  CAS  PubMed  Google Scholar 

  10. Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM . Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med 1989; 169: 59–72.

    Article  CAS  PubMed  Google Scholar 

  11. Liew FY . Functional heterogeneity of CD4+ T cells in leishmaniasis. Immunol Today 1989; 10: 40–45.

    Article  CAS  PubMed  Google Scholar 

  12. Sacks D, Anderson C . Re-examination of the immunosuppressive mechanisms mediating non-cure of Leishmania infection in mice. Immunol Rev 2004; 201: 225–238.

    Article  CAS  PubMed  Google Scholar 

  13. Sypek JP, Chung CL, Mayor SE, Subramanyam JM, Goldman SJ, Sieburth DS et al. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J Exp Med 1993; 177: 1797–1802.

    Article  CAS  PubMed  Google Scholar 

  14. Biedermann T, Zimmermann S, Himmelrich H, Gumy A, Egeter O, Sakrauski AK et al. IL-4 instructs TH1 responses and resistance to Leishmania major in susceptible BALB/c mice. Nat Immunol 2001; 2: 1054–1060.

    Article  CAS  PubMed  Google Scholar 

  15. Tacchini-Cottier F, Zweifel C, Belkaid Y, Mukankundiye C, Vasei M, Launois P et al. An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major. J Immunol 2000; 165: 2628–2636.

    Article  CAS  PubMed  Google Scholar 

  16. Shankar AH, Titus RG . T cell and non-T cell compartments can independently determine resistance to Leishmania major. J Exp Med 1995; 181: 845–855.

    Article  CAS  PubMed  Google Scholar 

  17. Beebe AM, Mauze S, Schork NJ, Coffman RL . Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice. Immunity 1997; 6: 551–557.

    Article  CAS  PubMed  Google Scholar 

  18. Roberts LJ, Baldwin TM, Curtis JM, Handman E, Foote SJ . Resistance to Leishmania major is linked to H2 region on chromosome 17 and to chromosome 9. J Exp Med 1997; 9: 1705–1710.

    Article  Google Scholar 

  19. Roberts LJ, Baldwin TM, Speed TP, Handman E, Foote SJ . Chromosomes X, 9, and the H2 locus interact epistatically to control Leishmania major infection. Eur J Immunol 1999; 29: 3047–3050.

    Article  CAS  PubMed  Google Scholar 

  20. Demant P, Hart AAM . Recombinant congenic strains: a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics 1986; 24: 416–422.

    Article  CAS  PubMed  Google Scholar 

  21. Stassen APM, Groot PC, Eppig JT, Demant P . Genetic composition of the recombinant congenic strains. Mamm Genome 1996; 7: 55–58.

    Article  CAS  PubMed  Google Scholar 

  22. Lipoldová M, Svobodová M, Havelková H, Krulová M, Badalová J, Nohynková E et al. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics 2002; 54: 174–183.

    Article  PubMed  Google Scholar 

  23. Kenney RT, Sacks DL, Gam AA, Murray HW, Sundar S . Splenic cytokine responses in Indian kala-azar before and after treatment. J Infect Dis 1998; 177: 815–818.

    Article  CAS  PubMed  Google Scholar 

  24. Demant P, Lipoldová M, Svobodová M . Resistance to Leishmania major in mice. Science 1996; 274: 1392–1393.

    Article  CAS  PubMed  Google Scholar 

  25. Lipoldová M, Svobodová M, Krulová M, Havelková H, Badalová J, Nohýnková E et al. Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun 2000; 1: 200–206.

    Article  PubMed  Google Scholar 

  26. Badalová J, Svobodová M, Havelková H, Vladimirov V, Vojtíková J, Engová J et al. Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice. Genes Immun 2002; 3: 187–195.

    Article  PubMed  Google Scholar 

  27. Vladimirov V, Badalová J, Svobodová M, Havelková H, Hart AA, Blažková H et al. Different genetic control of cutaneous and visceral disease after Leishmania major infection in mouse. Infect Immun 2003; 71: 2041–2046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Czarnomska A, Krysiak E, Piskorowska J, Sitarz M, Pysniak K, Pilčík T et al. Opposite effects of modifiers of the ApcMin mutation in intestine and mammary gland. Cancer Res 2003; 63: 4533–4537.

    CAS  PubMed  Google Scholar 

  29. Kosařová M, Havelková H, Krulová M, Demant P, Lipoldová M . The production of two Th2 cytokines, interleukin-4 and interleukin-10 is controlled independently by a locus Cypr1 and loci Cypr2 and Cypr3, respectively. Immunogenetics 1999; 49: 134–141.

    Article  PubMed  Google Scholar 

  30. Skamene E, Schurr E, Gros P . Infection genomics: Nramp1 as a major determinant of natural resistance to intracellular infections. Annu Rev Med 1998; 49: 275–287.

    Article  CAS  PubMed  Google Scholar 

  31. Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou H, Kobzik L et al. Ipr1 gene mediates innate immunity to tuberculosis. Nature 2005; 434: 767–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brownstein DG, Gras L . Chromosome mapping of Rmp-4, a gonad-dependent gene encoding host resistance to mousepox. J Virol 1995; 69: 6958–6964.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Mitsos LM, Cardon LR, Fortin A, Ryan L, LaCourse R, North RJ et al. Genetic control of susceptibility to infection with Mycobacterium tuberculosis in mice. Genes Immun 2000; 1: 467–477.

    Article  CAS  PubMed  Google Scholar 

  34. Iraqi F, Clapcott SJ, Kumari P, Haley CS, Kemp SJ, Teale AJ . Fine mapping of trypanosomiasis resistance loci in murine advanced intercross lines. Mamm Genome 2000; 11: 645–648.

    Article  CAS  PubMed  Google Scholar 

  35. DeTolla LJ, Semprevivo LH, Palczuk NC, Passmore HC . Genetic control of acquired resistance to visceral leishmaniasis in mice. Immunogenetics 1980; 10: 353–361.

    Article  PubMed  Google Scholar 

  36. Roper RJ, Weis JJ, McCracken BA, Green CB, Ma Y, Weber KS et al. Genetic control of susceptibility to experimental Lyme arthritis is polygenic and exhibits consistent linkage to multiple loci on chromosome 5 in four independent mouse crosses. Genes Immun 2001; 2: 388–397.

    Article  CAS  PubMed  Google Scholar 

  37. De Souza CM, Morel L, Cabrera WHK, Starobinas N, Ribeiro OG, Siqueira M et al. Quantitative trait loci in chromosomes 3, 8, and 9 regulate antibody production against Salmonella flagelar antigens in the mouse. Mamm Genome 2004; 15: 630–636.

    Article  CAS  PubMed  Google Scholar 

  38. Sebastiani G, Olien L, Gauthier S, Skamene E, Morgan K, Gros P et al. Mapping of genetic modulators of natural resistance to infection with Salmonella typhimurium in wild-derived mice. Genomics 1998; 47: 180–186.

    Article  CAS  PubMed  Google Scholar 

  39. Trezena AG, Souza CM, Borrego A, Massa S, Siquiera M, De Franco M et al. Co-localization of quantitative trait loci regulating resistance to Salmonella typhimurium infection and specific antibody production phenotypes. Microbes Infect 2002; 4: 1409–1415.

    Article  CAS  PubMed  Google Scholar 

  40. Boyartchuk VL, Broman KW, Mosher RE, D'Orazio SE, Starnbach MN, Dietrich WF . Multigenic control of Listeria monocytogenes susceptibility in mice. Nat Genet 2001; 27: 259–260.

    Article  CAS  PubMed  Google Scholar 

  41. Graefe SE, Meyer BS, Muller-Myhsok B, Ruschendorf F, Drosten C, Laue T et al. Murine susceptibility to Chagas' disease maps to chromosomes 5 and 17. Genes Immun 2003; 4: 321–325.

    Article  CAS  PubMed  Google Scholar 

  42. Menon JN, Bretscher PA . Parasite dose determines the Th1/Th2 nature of the response to Leishmania major independently of infection route and strain of host and parasite. Eur J Immunol 1998; 28: 4020–4028.

    Article  CAS  PubMed  Google Scholar 

  43. Ruivenkamp CA, van Wezel T, Zanon C, Stassen AP, Vlèek C, Csikos T et al. Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat Genet 2002; 31: 295–300.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Z, Futamura M, Vikis HG, Wang M, Li J, Wang Y et al. Positional cloning of the major quantitative trait locus underlying lung tumor susceptibility in mice. Proc Natl Acad Sci USA 2003; 100: 12642–12647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chakour R, Guler R, Bugnon M, Allenbach C, Garcia I, Mauel J et al. Both the Fas ligand and inducible nitric oxide synthase are needed for control of parasite replication within lesions in mice infected with Leishmania major whereas the contribution of tumor necrosis factor is minimal. Infect Immun 2003; 71: 5287–5295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Theodos CM, Shankar A, Glasebrook AL, Roeder WD, Titus RG . The effect of treating with anti-interleukin-1 receptor antibody on the course of experimental murine cutaneous leishmaniasis. Parasite Immunol 1994; 16: 571–577.

    Article  CAS  PubMed  Google Scholar 

  47. Neilson J, Stankunas K, Crabtree GR . Monitoring the duration of antigen-receptor occupancy by calcineurin/glycogen-synthase-kinase-3 control of NF-AT nuclear shuttling. Curr Opin Immunol 2001; 13: 346–350.

    Article  CAS  PubMed  Google Scholar 

  48. Carlring J, Barr TA, McCormick AL, Heath AW . CD40 antibody as an adjuvant induces enhanced T cell responses. Vaccine 2004; 22: 3323–3328.

    Article  CAS  PubMed  Google Scholar 

  49. Kiniwa M, Gately M, Gubler U, Chizzonite R, Fargeas C, Delespesse G . Recombinant interleukin-12 suppresses the synthesis of immunoglobulin E by interleukin-4 stimulated human lymphocytes. J Clin Invest 1992; 90: 262–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maggi E, Del Prete GF, Parronchi P, Tiri A, Macchia D, Biswas P et al. Role for T cells, IL-2 and IL-6 in the IL-4-dependent in vitro human IgE synthesis. Immunology 1989; 68: 300–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Odom S, Gomez G, Kovářová M, Furumoto Y, Ryan JJ, Wright HV et al. Negative regulation of immunoglobulin E-dependent allergic responses by Lyn kinase. J Exp Med 2004; 199: 1491–1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chakir H, Campos-Neto A, Mojibian M, Webb JR . IL-12Rbeta2-deficient mice of a genetically resistant background are susceptible to Leishmania major infection and develop a parasite-specific Th2 immune response. Microbes Infect 2003; 5: 241–249.

    Article  CAS  PubMed  Google Scholar 

  53. Gao L-Y, Kwaik YA . The modulation of host cell apoptosis by intracellular bacterial pathogens. Trends Microbiol 2000; 8: 306–313.

    Article  CAS  PubMed  Google Scholar 

  54. Lohoff M, Duncan GS, Ferrick D, Mittrucker HW, Bischof S, Prechtl S et al. Deficiency in the transcription factor interferon regulatory factor (IRF)-2 leads to severely compromised development of natural killer and T helper type 1 cells. J Exp Med 2000; 192: 325–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang ZE, Reiner SL, Zheng S, Dalton DK, Locksley RM . CD4+ effector cells default to the Th2 pathway in interferon gamma-deficient mice infected with Leishmania major. J Exp Med 1994; 179: 1367–1371.

    Article  CAS  PubMed  Google Scholar 

  56. Dent AL, Doherty TM, Paul WE, Sher A, Staudt LM . BCL-6-deficient mice reveal an IL-4-independent, STAT6-dependent pathway that controls susceptibility to infection by Leishmania major. J Immunol 1999; 163: 2098–2103.

    CAS  PubMed  Google Scholar 

  57. Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 1995; 375: 408–411.

    Article  CAS  PubMed  Google Scholar 

  58. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ . Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 2000; 404: 407–411.

    Article  CAS  PubMed  Google Scholar 

  59. Swihart K, Fruth U, Messmer N, Hug K, Behin R, Huang S et al. Mice from a genetically resistant background lacking the interferon gamma receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell 1-type CD4+ T cell response. J Exp Med 1995; 181: 961–971.

    Article  CAS  PubMed  Google Scholar 

  60. Dumas C, Muyombwe A, Roy G, Matte C, Ouellette M, Olivier M et al. Recombinant Leishmania major secreting biologically active granulocyte-macrophage colony-stimulating factor survives poorly in macrophages in vitro and delays disease development in mice. Infect Immun 2003; 71: 6499–6509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jabara HH, Vercelli D . Engagement of CD14 on monocytes inhibits the synthesis of human Igs, including IgE. J Immunol 1994; 153: 972–978.

    CAS  PubMed  Google Scholar 

  62. Diamond LS, Herman CM . Incidence of trypanosomes in the Canada goose as revealed by bone marrow culture. J Parasitol 1954; 40: 195–202.

    Article  Google Scholar 

  63. Lipoldová M, Kosařová M, Zajícová A, Holáň V, Hart AA, Krulová M et al. Separation of multiple genes controlling the T-cell proliferative response to IL-2 and anti-CD3 using recombinant congenic strains. Immunogenetics 1995; 41: 301–311.

    Article  PubMed  Google Scholar 

  64. Krulová M, Havelková H, Kosařová M, Holáň V, Hart AA, Demant P et al. IL-2-induced proliferative response is controlled by loci Cinda1 and Cinda2 on mouse chromosomes 11 and 12: a distinct control of the response induced by different IL-2 concentrations. Genomics 1997; 42: 11–15.

    Article  PubMed  Google Scholar 

  65. Lander ES, Schork NJ . Genetic dissection of complex traits. Science 1994; 265: 2037–2048.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation received financial support from the Howard Hughes Medical Institute (Grant 55000323), the Grant Agency of the Czech Republic (Grants 310/03/1381 and 310/03/H147), Academy of Sciences of the Czech Republic (Project no. AVOZ50520514) and from the European Commission (the Contracts ERBI-C15-CT98-0317 and BIO-4-CT98-0445) and from Health Research Inc. (Buffalo, NY, USA). We thank Dr Brian Bundy (Department of Biostatistics, Roswell Park Cancer Institute) for advice on statistical analysis. We acknowledge the permission of Dr P Kodym and Dr K Zitek (State Institute for Health, Prague) to use their laboratory and animal facilities for part of these experiments. We thank Mrs Mary Ketchum for the help with preparation of illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Lipoldová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havelková, H., Badalová, J., Svobodová, M. et al. Genetics of susceptibility to leishmaniasis in mice: four novel loci and functional heterogeneity of gene effects. Genes Immun 7, 220–233 (2006). https://doi.org/10.1038/sj.gene.6364290

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364290

Keywords

This article is cited by

Search

Quick links