Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Full Paper
  • Published:

Allele-specific quantification of HLA-DQB1 gene expression by real-time reverse transcriptase-polymerase chain reaction

Abstract

In addition to coding region polymorphism, allele-specific variation in the upstream regulatory region of the HLA-DQB1 gene has been detected. Reporter gene assays and transfection studies have indicated that HLA-DQB1 promoter polymorphism may be of functional significance. The aim of this study was to utilize real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for allele-specific quantification of HLA-DQB1 expression and to analyze cell-specific HLA-DQB1 expression in vivo. For the allele-specific quantification of DQB1 gene products, a real-time RT-PCR set of primer pairs (n=27) and probes (n=5) targeting exon 2 variability was established. The robustness and integrity of the assay system were confirmed by using recombinant DQB1 exon 2 plasmid clones as active exogenous controls. Sensitivity and reproducibility were assessed by serial dilution and allelic mixing analyses. In application to the study of allele-specific expression of DQB1 gene products during cytokine-driven maturation of monocyte-derived dendritic cells, differential patterns of allelic expression in heterozygous individuals were observed for DQB1*0301, compared to DQB1*0501 and DQB1*0602. At maximum, 1.9-fold (*0301/*0501) and 2.5-fold (*0301/*0602) higher induction was seen for DQB*0301. In conclusion, HLA-DQB1 expression can be analyzed by real-time RT-PCR suitable for cell- and allele-specific detection of HLA-DQB1 transcripts in homo- and heterozygous combinations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wassmuth R . HLA/MHC class II gene regulation. In: Browning M, McMichael A (eds). HLA and MHC: Genes, Molecules and Function. BIOS Scientific Publishers: Oxford, 1996, pp 159–191.

    Google Scholar 

  2. Glimcher LH, Kara CJ . Sequences and factors: a guide to MHC class-II transcription. Annu Rev Immunol 1992; 10: 13–49.

    Article  CAS  Google Scholar 

  3. Ting JP, Baldwin AS . Regulation of MHC gene expression. Curr Opin Immunol 1993; 5: 8–16.

    Article  CAS  Google Scholar 

  4. Boss JM . Regulation of transcription of MHC class II genes. Curr Opin Immunol 1997; 9: 107–113.

    Article  CAS  Google Scholar 

  5. Emery P, Mach B, Reith W . The different level of expression of HLA-DRB1 and -DRB3 genes is controlled by conserved isotypic differences in promoter sequence. Hum Immunol 1993; 38: 137–147.

    Article  CAS  Google Scholar 

  6. Andersen LC, Beaty JS, Nettles JW, Seyfried CE, Nepom GT, Nepom BS . Allelic polymorphism in transcriptional regulatory regions of HLA-DQB genes. J Exp Med 1991; 173: 181–192.

    Article  CAS  Google Scholar 

  7. Reichstetter S, Krellner PH, Meenzen CM, Kalden JR, Wassmuth R . Comparative analysis of sequence variability in the upstream regulatory region of the HLA-DQB1 gene. Immunogenetics 1994; 39: 207–212.

    Article  CAS  Google Scholar 

  8. Reichstetter S, Brünnler G, Meenzen CM, Kalden JR, Wassmuth R . DQB1 promoter sequence variability and linkage in Caucasoids. Hum Immunol 1996; 51: 73–80.

    Article  CAS  Google Scholar 

  9. Shewey LM, Nepom GT . Allele-specific DNA–protein interactions associated with the X- box regulatory region of the DQB1*0302 gene. Autoimmunity 1993; 15 (Suppl): 8–11.

    Article  Google Scholar 

  10. Nepom GT, Chung J, West KA . Differential expression of HLA-DQB1 alleles in a heterozygous cell line. Immunogenetics 1995; 42: 143–148.

    CAS  PubMed  Google Scholar 

  11. Beaty JS, Nepom GT . Allele-specific transcriptional control of HLA-DQB1 is cell-type dependent. In: Charron DJ (ed). Genetic Diversity of HLA: Functional and Medical Implication. EDK: Paris, 1997, pp 307–309.

    Google Scholar 

  12. Lagoo-Deenadayalan S, Lagoo AS, Barber WH, Hardy KJ . A standardized approach to PCR-based semiquantitation of multiple cytokine gene transcripts from small cell samples. Lymphokine Cytokine Res 1993; 12: 59–67.

    CAS  PubMed  Google Scholar 

  13. Zhou NM, Matthys P, Polacek C et al. A competitive RT-PCR method for the quantitative analysis of cytokine mRNAs in mouse tissues. Cytokine 1997; 9: 212–218.

    Article  CAS  Google Scholar 

  14. Gibson UE, Heid CA, Williams PM . A novel method for real time quantitative RT-PCR. Genome Res 1996; 6: 995–1001.

    Article  CAS  Google Scholar 

  15. Heid CA, Stevens J, Livak KJ, Williams PM . Real time quantitative PCR. Genome Res 1996; 6: 986–994.

    Article  CAS  Google Scholar 

  16. Beaty JS, West KA, Nepom GT . An allele-specific regulatory sequence polymorphism in HLA-DQB1 influences transcriptional activity. Mol Cell Biol 1995; 15: 4771–4782.

    Article  CAS  Google Scholar 

  17. Cesari M, Caillens H, Cadet F, Pabion M . In vivo analysis of HLA-DQ gene expression in heterozygous cell lines. Immunogenetics 1999; 50: 309–318.

    Article  CAS  Google Scholar 

  18. Zien A, Aigner T, Zimmer R, Lengauer T . Centralization: a new method for the normalization of gene expression data. Bioinformatics 2001; 17 (Suppl 1): S323–S331.

    Article  Google Scholar 

  19. Fernandez S, Wassmuth R, Knerr I, Frank C, Haas JP . Relative quantification of HLA-DRA1 and -DQA1 expression by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Eur J Immunogenet 2003; 30: 141–148.

    Article  CAS  Google Scholar 

  20. Pierre P, Turley SJ, Gatti E et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 1997; 388: 787–792.

    Article  CAS  Google Scholar 

  21. Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A . Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 1997; 388: 782–787.

    Article  CAS  Google Scholar 

  22. Steimle V, Otten LA, Zufferey M, Mach B . Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 1993; 75: 135–146.

    Article  CAS  Google Scholar 

  23. Landmann S, Muhlethaler-Mottet A, Bernasconi L et al. Maturation of dendritic cells is accompanied by rapid transcriptional silencing of class II transactivator (CIITA) expression. J Exp Med 2001; 194: 379–391.

    Article  CAS  Google Scholar 

  24. Harton JA, Ting JP . Class II transactivator: mastering the art of major histocompatibility complex expression. Mol Cell Biol 2000; 20: 6185–6194.

    Article  CAS  Google Scholar 

  25. Beaty JS, West KA, Nepom GT . Functional effects of a natural polymorphism in the transcriptional regulatory sequence of HLA-DQB1. Mol Cell Biol 1995; 15: 4771–4782.

    Article  CAS  Google Scholar 

  26. Tremmel M, Opelz G, Mytilineos J . High-resolution typing for HLA-DRB1*15 and -DRB1*16 by fluorescence-marked sequence-specific priming (TaqMan assay). Tissue Antigens 1999; 54: 508–516.

    Article  CAS  Google Scholar 

  27. Slateva K, Elsner HA, Albis-Camps M, Blasczyk R . HLA-DRB fluorotyping by dark quenching and automated analysis. Tissue Antigens 2001; 58: 250–254.

    Article  CAS  Google Scholar 

  28. Spriewald BM, Wassmuth R, Carl HD et al. Microchimerism after liver transplantation: prevalence and methodological aspects of detection. Transplantation 1998; 66: 77–83.

    Article  CAS  Google Scholar 

  29. Garavito G, Klein D, Denis M, Pugliese A, Ricordi C, Pastori RL . Real-time sequence-specific primer polymerase chain reaction amplification of HLA class II alleles: a novel approach to analyze microchimerism. Transplantation 2002; 73: 822–825.

    Article  CAS  Google Scholar 

  30. Tao X, Constant S, Jorritsma P, Bottomly K . Strength of TCR signal determines the costimulatory requirements for Th1 and Th2 CD4+ T cell differentiation. J Immunol 1997; 159: 5956–5963.

    CAS  PubMed  Google Scholar 

  31. Leitenberg D, Boutin Y, Constant S, Bottomly K . CD4 regulation of TCR signaling and T cell differentiation following stimulation with peptides of different affinities for the TCR. J Immunol 1998; 161: 1194–1203.

    CAS  PubMed  Google Scholar 

  32. Pickl WF, Majdic O, Kohl P et al. Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes. J Immunol 1996; 157: 3850–3859.

    CAS  PubMed  Google Scholar 

  33. Sallusto F, Lanzavecchia A . Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994; 179: 1109–1118.

    Article  CAS  Google Scholar 

  34. Zacher T, Knerr I, Rascher W, Kalden JR, Wassmuth R . Characterization of monocyte-derived dendritic cells in recent-onset diabetes mellitus type 1. Clin Immunol 2002; 105: 17–24.

    Article  CAS  Google Scholar 

  35. Bull M, van Hoef A, Gorski J . Transcription analysis of class II human leukocyte antigen genes from normal and immunodeficient B lymphocytes, using polymerase chain reaction. Mol Cell Biol 1990; 10: 3792–3796.

    Article  CAS  Google Scholar 

  36. Bugawan TL, Erlich HA . Rapid typing of HLA-DQB1 DNA polymorphism using nonradioactive oligonucleotide probes and amplified DNA. Immunogenetics 1991; 33: 163–170.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the SFB 263 of the German Research Foundation DFG (Deutsche Forschungsgemeinschaft) and the Federal Ministry of Education and Research (BMBF)-funded Center for Interdisciplinary Clinical Research at the Friedrich-Alexander-Universität Erlangen-Nürnberg (IZKF Erlangen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Wassmuth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferstl, B., Zacher, T., Lauer, B. et al. Allele-specific quantification of HLA-DQB1 gene expression by real-time reverse transcriptase-polymerase chain reaction. Genes Immun 5, 405–416 (2004). https://doi.org/10.1038/sj.gene.6364108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364108

Keywords

This article is cited by

Search

Quick links