Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines

Abstract

Epidemiologic studies have demonstrated an inverse association between flavonoid intake and prostate cancer (PCa) risk. The East Asian diet is very high in flavonoids and, correspondingly, men in China and Japan have the lowest incidence of PCa worldwide. There are thousands of different naturally occurring and synthetic flavonoids. However, only a few have been studied in PCa. Our aim was to identify novel flavonoids with antiproliferative effect in PCa cell lines, as well as determine their effects on cell cycle. We have screened a representative subgroup of 26 flavonoids for antiproliferative effect on the human PCa (LNCaP and PC3), breast cancer (MCF-7), and normal prostate stromal cell lines (PrSC). Using a fluorescence-based cell proliferation assay (Cyquant), we have identified five flavonoids, including the novel compounds 2,2′-dihydroxychalcone and fisetin, with antiproliferative and cell cycle arresting properties in human PCa in vitro. Most of the flavonoids tested exerted antiproliferative effect at lower doses in the PCa cell lines compared to the non-PCa cells. Flow cytometry was used as a means to determine the effects on cell cycle. PC3 cells were arrested in G2/M phase by flavonoids. LNCaP cells demonstrated different cell cycle profiles. Further studies are warranted to determine the molecular mechanism of action of 2,2′-DHC and fisetin in PCa, and to establish their effectiveness in vivo.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2

References

  1. Ganry O . Phytoestrogens and prostate cancer risk. Prev Med 2005; 41: 1–6.

    Article  CAS  PubMed  Google Scholar 

  2. Morton MS, Chan PS, Cheng C, Blacklock N, Matos-Ferreira A, Abranches-Monteiro L et al. Lignans and isoflavonoids in plasma and prostatic fluid in men: samples from Portugal, Hong Kong, and the United Kingdom. Prostate 1997; 32: 122–128.

    Article  CAS  PubMed  Google Scholar 

  3. Adlercreutz H, Markkanen H, Watanabe S . Plasma concentrations of phyto-oestrogens in Japanese men. Lancet 1993; 342: 1209–1210.

    Article  CAS  PubMed  Google Scholar 

  4. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  PubMed  Google Scholar 

  5. Lyn-Cook BD, Rogers T, Yan Y, Blann EB, Kadlubar FF, Hammons GJ . Chemopreventive effects of tea extracts and various components on human pancreatic and prostate tumor cells in vitro. Nutr Cancer 1999; 35: 80–86.

    Article  CAS  PubMed  Google Scholar 

  6. Maskarinec G, Singh S, Meng L, Franke AA . Dietary soy intake and urinary isoflavone excretion among women from a multiethnic population. Cancer Epidemiol Biomarkers Prev 1998; 7: 613–619.

    PubMed  CAS  Google Scholar 

  7. Hirvonen T, Virtamo J, Korhonen P, Albanes D, Pietinen P . Flavonol and flavone intake and the risk of cancer in male smokers (Finland). Cancer Causes Control 2001; 12: 789–796.

    Article  CAS  PubMed  Google Scholar 

  8. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 2002; 76: 560–568.

    Article  CAS  PubMed  Google Scholar 

  9. Neuhouser ML . Dietary flavonoids and cancer risk: evidence from human population studies. Nutr Cancer 2004; 50: 1–7.

    Article  CAS  PubMed  Google Scholar 

  10. Lee MM, Gomez SL, Chang JS, Wey M, Wang RT, Hsing AW . Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiol Biomarkers Prev 2003; 12: 665–668.

    PubMed  CAS  Google Scholar 

  11. Bohm BA . Structural variation and the flavonoid literature. In: Ravindranath B (ed.), Introduction to Flavonoids, vol. 2, Harwood Academic: New York, 1998, pp. 5–7.

    Google Scholar 

  12. Kuhnau J . The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet 1976; 24: 117–191.

    Article  CAS  PubMed  Google Scholar 

  13. Noroozi M, Angerson WJ, Lean ME . Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. Am J Clin Nutr 1998; 67: 1210–1218.

    Article  CAS  PubMed  Google Scholar 

  14. Valachovicova T, Slivova V, Sliva D . Cellular and physiological effects of soy flavonoids. Mini Rev Med Chem 2004; 4: 881–887.

    Article  CAS  PubMed  Google Scholar 

  15. Le Marchand L . Cancer preventive effects of flavonoids--a review. Biomed Pharmacother 2002; 56: 296–301.

    Article  CAS  PubMed  Google Scholar 

  16. Sarkar FH, Li Y . Soy isoflavones and cancer prevention. Cancer Invest 2003; 21: 744–757.

    Article  CAS  PubMed  Google Scholar 

  17. Castle EP, Thrasher JB . The role of soy phytoestrogens in prostate cancer. Urol Clin North Am 2002; 29: 71–81, viii–ix.

    Article  PubMed  Google Scholar 

  18. Park OJ, Surh YJ . Chemopreventive potential of epigallocatechin gallate and genistein: evidence from epidemiological and laboratory studies. Toxicol Lett 2004; 150: 43–56.

    Article  CAS  PubMed  Google Scholar 

  19. Adhami VM, Ahmad N, Mukhtar H . Molecular targets for green tea in prostate cancer prevention. J Nutr 2003; 133: S2417–S2424.

    Article  Google Scholar 

  20. Agarwal R . Cell signaling and regulators of cell cycle as molecular targets for prostate cancer prevention by dietary agents. Biochem Pharmacol 2000; 60: 1051–1059.

    Article  CAS  PubMed  Google Scholar 

  21. Tyagi AK, Singh RP, Agarwal C, Chan DC, Agarwal R . Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth Inhibition, G2-M arrest, and apoptosis. Clin Cancer Res 2002; 8: 3512–3519.

    PubMed  CAS  Google Scholar 

  22. Manthey JA, Guthrie N . Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J Agric Food Chem 2002; 50: 5837–5843.

    Article  CAS  PubMed  Google Scholar 

  23. Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M . Antiproliferative activity of flavonoids on several cancer cell lines. Biosci Biotechnol Biochem 1999; 63: 896–899.

    Article  CAS  PubMed  Google Scholar 

  24. Bruggisser R, von Daeniken K, Jundt G, Schaffner W, Tullberg-Reinert H . Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Med 2002; 68: 445–448.

    Article  CAS  PubMed  Google Scholar 

  25. Bohm BA . Biosynthesis and genetics. In: Ravindranath B (ed.), Introduction to Flavonoids, vol. 2, Harwood Academic: New York, 1998, pp. 299–306.

    Google Scholar 

  26. Chas E, Sando HHB . The Flavones of Rhus. American J Bot 1918; 5: 105–111.

    Article  Google Scholar 

  27. Takahashi T, Takasuka N, Iigo M, Baba M, Nishino H, Tsuda H et al. Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development. Cancer Sci 2004; 95:448–453.

    Article  CAS  PubMed  Google Scholar 

  28. Sampson L, Rimm E, Hollman PC, de Vries JH, Katan MB . Flavonol and flavone intakes in US health professionals. J Am Diet Assoc 2002; 102: 1414–1420.

    Article  PubMed  Google Scholar 

  29. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D . Dietary flavonoids and cancer risk in the Zutphen Elderly Study. Nutr Cancer 1994; 22: 175–184.

    Article  CAS  PubMed  Google Scholar 

  30. Trzeciak A . Quercetin: significance in mutagenesis and carcinogenesis. Postepy Biochem 2001; 47: 299–306.

    PubMed  CAS  Google Scholar 

  31. van der Woude H, Gliszczynska-Swiglo A, Struijs K, Smeets A, Alink GM, Rietjens IM . Biphasic modulation of cell proliferation by quercetin at concentrations physiologically relevant in humans. Cancer Lett 2003; 200: 41–47.

    Article  CAS  PubMed  Google Scholar 

  32. Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, Yoo YD et al. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol 2001; 19: 837–844.

    PubMed  CAS  Google Scholar 

  33. Galvano F, La Fauci L, Lazzarino G, Fogliano V, Ritieni A, Ciappellano S et al. Cyanidins: metabolism and biological properties. J Nutr Biochem 2004; 15: 2–11.

    Article  CAS  PubMed  Google Scholar 

  34. Xue H, Aziz RM, Sun N, Cassady JM, Kamendulis LM, Xu Y et al. Inhibition of cellular transformation by berry extracts. Carcinogenesis 2001; 22: 351–356.

    Article  CAS  PubMed  Google Scholar 

  35. Paschka AG, Butler R, Young CY . Induction of apoptosis in prostate cancer cell lines by the green tea component, (−)-epigallocatechin-3-gallate. Cancer Lett 1998; 130: 1–7.

    Article  CAS  PubMed  Google Scholar 

  36. Brusselmans K, De Schrijver E, Heyns W, Verhoeven G, Swinnen JV . Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. Int J Cancer 2003; 106: 856–862.

    Article  CAS  PubMed  Google Scholar 

  37. Saleem M, Adhami VM, Siddiqui IA, Mukhtar H . Tea beverage in chemoprevention of prostate cancer: a mini-review. Nutr Cancer 2003; 47: 13–23.

    Article  CAS  PubMed  Google Scholar 

  38. Chung LY, Cheung TC, Kong SK, Fung KP, Choy YM, Chan ZY et al. Induction of apoptosis by green tea catechins in human prostate cancer DU145 cells. Life Sci 2001; 68: 1207–1214.

    Article  CAS  PubMed  Google Scholar 

  39. Kobayashi T, Nakata T, Kuzumaki T . Effect of flavonoids on cell cycle progression in prostate cancer cells. Cancer Lett 2002; 176: 17–23.

    Article  CAS  PubMed  Google Scholar 

  40. Knowles LM, Zigrossi DA, Tauber RA, Hightower C, Milner JA . Flavonoids suppress androgen-independent human prostate tumor proliferation. Nutr Cancer 2000; 38: 116–122.

    Article  CAS  PubMed  Google Scholar 

  41. Kanazawa M, Satomi Y, Mizutani Y, Ukimura O, Kawauchi A, Sakai T et al. Isoliquiritigenin inhibits the growth of prostate cancer. Eur Urol 2003; 43: 580–586.

    Article  CAS  PubMed  Google Scholar 

  42. Choi YH, Lee WH, Park KY, Zhang L . p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn J Cancer Res 2000; 91: 164–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tyagi A, Agarwal C, Agarwal R . Inhibition of retinoblastoma protein (Rb) phosphorylation at serine sites and an increase in Rb-E2F complex formation by silibinin in androgen-dependent human prostate carcinoma LNCaP cells: role in prostate cancer prevention. Mol Cancer Ther 2002; 1: 525–532.

    PubMed  CAS  Google Scholar 

  44. Davis JN, Singh B, Bhuiyan M, Sarkar FH . Genistein-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. Nutr Cancer 1998; 32: 123–131.

    Article  CAS  PubMed  Google Scholar 

  45. Shukla S, Gupta S . Molecular mechanisms for apigenin-induced cell-cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells. Mol Carcinog 2004; 39: 114–126.

    Article  CAS  PubMed  Google Scholar 

  46. Gupta S, Hussain T, Mukhtar H . Molecular pathway for (−)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys 2003; 410: 177–185.

    Article  CAS  PubMed  Google Scholar 

  47. Ikezoe T, Chen SS, Heber D, Taguchi H, Koeffler HP . Baicalin is a major component of PC-SPES which inhibits the proliferation of human cancer cells via apoptosis and cell cycle arrest. Prostate 2001; 49: 285–292.

    Article  CAS  PubMed  Google Scholar 

  48. Chen YC, Shen SC, Lee WR, Lin HY, Ko CH, Shih CM et al. Wogonin and fisetin induction of apoptosis through activation of caspase 3 cascade and alternative expression of p21 protein in hepatocellular carcinoma cells SK-HEP-1. Arch Toxicol 2002; 76: 351–359.

    Article  CAS  PubMed  Google Scholar 

  49. Siddiqui IA, Adhami VM, Afaq F, Ahmad N, Mukhtar H . Modulation of phosphatidylinositol-3-kinase/protein kinase B- and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells. J Cell Biochem 2004; 91: 232–242.

    Article  CAS  PubMed  Google Scholar 

  50. Rao A, Coan A, Welsh JE, Barclay WW, Koumenis C, Cramer SD . Vitamin D receptor and p21/WAF1 are targets of genistein and 1, 25-dihydroxyvitamin D3 in human prostate cancer cells. Cancer Res 2004; 64: 2143–2147.

    Article  CAS  PubMed  Google Scholar 

  51. Mentor-Marcel R, Lamartiniere CA, Eltoum IE, Greenberg NM, Elgavish A . Genistein in the diet reduces the incidence of poorly differentiated prostatic adenocarcinoma in transgenic mice (TRAMP). Cancer Res 2001; 61: 6777–6782.

    PubMed  CAS  Google Scholar 

  52. Gupta S, Hastak K, Ahmad N, Lewin JS, Mukhtar H . Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci USA 2001; 98: 10350–10355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rice L, Samedi VG, Medrano TA, Sweeney CA, Baker HV, Stenstrom A et al. Mechanisms of the growth inhibitory effects of the isoflavonoid biochanin A on LNCaP cells and xenografts. Prostate 2002; 52: 201–212.

    Article  CAS  PubMed  Google Scholar 

  54. Singh RP, Sharma G, Dhanalakshmi S, Agarwal C, Agarwal R . Suppression of advanced human prostate tumor growth in athymic mice by silibinin feeding is associated with reduced cell proliferation, increased apoptosis, and inhibition of angiogenesis. Cancer Epidemiol Biomarkers Prev 2003; 12: 933–939.

    CAS  PubMed  Google Scholar 

  55. Moridani MY, Galati G, O'Brien PJ . Comparative quantitative structure toxicity relationships for flavonoids evaluated in isolated rat hepatocytes and HeLa tumor cells. Chem Biol Interact 2002; 139: 251–264.

    Article  CAS  PubMed  Google Scholar 

  56. Sabzevari O, Galati G, Moridani MY, Siraki A, O'Brien PJ . Molecular cytotoxic mechanisms of anticancer hydroxychalcones. Chem Biol Interact 2004; 148: 57–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from the Canadian Prostate Cancer Research Initiative, and the Canadian Prostate Cancer Research Bionet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L H Klotz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haddad, A., Venkateswaran, V., Viswanathan, L. et al. Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines. Prostate Cancer Prostatic Dis 9, 68–76 (2006). https://doi.org/10.1038/sj.pcan.4500845

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500845

Keywords

  • cell cycle
  • diet
  • flow cytometry
  • flavonoids

This article is cited by

Search

Quick links