Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

5α-Androstane-3α,17β-diol activates pathway that resembles the epidermal growth factor responsive pathways in stimulating human prostate cancer LNCaP cell proliferation

Abstract

5α-Androstane-3α,17β-diol (3α-diol) is considered to have no androgenic effects in androgen target organs unless it is oxidized to 5α-dihydrotestosterone (5α-DHT). We used microarray and bioinformatics to identify and compare 3α-diol and 5α-DHT responsive gene in human prostate LNCaP cells. Through a procedure called ‘hypervariable determination’, a similar set of 30 responsive genes involving signal transduction, transcription regulation, and cell proliferation were selected in 5α-DHT-, 3α-diol-, and epidermal growth factor (EGF)-treated samples. F-means cluster and networking procedures showed that the responsive pattern of these genes was more closely related between 3α-diol and EGF than between 5α-DHT and 3α-diol treatments. We conclude that 3α-diol is capable of stimulating prostate cell proliferation by eliciting EGF-like pathway in conjunction with androgen receptor pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Keenan BS et al. Cytosol androgen receptor (AR) in human skin fibroblasts: characterization of the binding reaction and differentiation from androgen binding molecules of lower affinity. Steroids 1984; 43: 159–178.

    Article  CAS  Google Scholar 

  2. Page MJ, Parker MG . Androgen-regulated expression of a cloned rat prostatic c3 gene transfected into mouse mammary tumor cells. Cell 1983; 32: 495–502.

    Article  CAS  Google Scholar 

  3. Nelson PS et al. The program of androgen-responsive genes in neoplastic prostate epithelium. Proc Natl Acad Sci USA 2002; 99: 11890–11895.

    Article  CAS  Google Scholar 

  4. Davies P, Eaton CL . Regulation of prostate growth. J Endocrinol 1991; 131: 5–17.

    Article  CAS  Google Scholar 

  5. Bartsch W et al. Enzymes of androgen formation and degradation in the human prostate. Ann NY Acad Sci 1990; 595: 66.

    Article  Google Scholar 

  6. Span PN et al. 3α-Hydroxysteroid oxidoreductase activities in dihydrotestosterone degradation and back-formation in rat prostate and epididymis. J Steroid Biochem Mol Biol 1996; 58: 319–324.

    Article  CAS  Google Scholar 

  7. Penning TM . Moledular endocrinology of hydroxysteroid dehydrogenases. Endocr Rev 1997; 18: 281–305.

    CAS  PubMed  Google Scholar 

  8. Jacobi GH, Moore RJ, Wilson JD . Studies on the mechanism of 3α-androstanediol-induced growth of the dog prostate. Endocrinology 1978; 102: 1748–1755.

    Article  CAS  Google Scholar 

  9. Biswas MG, Russell DW . Expression cloning and characterization of oxidative 17β- and 3α-hydroxysteroid dehydrogenases from rat and human prostate. J Biol Chem 1997; 272: 15959–15966.

    Article  CAS  Google Scholar 

  10. Huang XF, Luu-The V . Characterization of the oxidative 3α-hydroxysteroid dehydrogenase activity of human recombinant 11-cis-retinol dehydrogenase. Biochem Biophys Acta 2001; 1547: 351–358.

    CAS  PubMed  Google Scholar 

  11. He XY et al. Function of human brain short chain L-3-hydroxyacyl coenzyme A dehydrogenase in androgen metabolism. Biochem Biophys Acta 2000; 1484: 267–277.

    CAS  PubMed  Google Scholar 

  12. Leihy MW et al. Virilization of the urogenital sinus of the tammar wallaby is not unique to 5α-androstane-3α,17β-diol. Mol Cell Endocrinol 2001; 181: 111–115.

    Article  CAS  Google Scholar 

  13. Ding VD et al. Sex hormone-binding globulin mediates prostate androgen receptor action via a novel signaling pathway. Endocrinology 1998; 139: 213–218.

    Article  CAS  Google Scholar 

  14. Jacobi GH, Wilson JD . 3α-Androstanediol and prostatic growth: comparison of 3α-androstanediol formation in prostates from 8 species including man and dog. J Urol 1979; 121: 612–614.

    Article  CAS  Google Scholar 

  15. Walsh PC, Wilson JD . The induction of prostatic hypertrophy in the dog with androstanediol. J Clin Invest 1976; 57: 1093–1097.

    Article  CAS  Google Scholar 

  16. Schultz FM, Wilson JD . Virilization of the Wolffian duct in the rat fetus by various androgens. Endocrinology 1974; 94: 979–986.

    Article  CAS  Google Scholar 

  17. Shaw G et al. Prostate formation in a marsupial is mediated by the testicular androgen 5α-androstane-3α,17β-diol. Proc Natl Acad Sci USA 2000; 97: 12256–12259.

    Article  CAS  Google Scholar 

  18. Nunlist EH et al. Partitioning of 5α-dihydrotestosterone and 5α-androstane-3α, 17β-diol activated pathways for stimulating human prostate cancer LNCaP cell proliferation. J Steroid Biochem Mol Biol 2004; 91: 157–170.

    Article  CAS  Google Scholar 

  19. De Bellis A et al. Epidermal growth factor, epidermal growth factor receptor, and transforming growth factor-alpha in human hyperplastic prostate tissue: expression and cellular localization. J Clin Endocrinol Metab 1996; 81: 4148–4154.

    CAS  PubMed  Google Scholar 

  20. De Miguel P et al. Immunohistochemical comparative analysis of transforming growth factor alpha, epidermal growth factor, and epidermal growth factor receptor in normal, hyperplastic and neoplastic human prostates. Cytokine 1999; 11: 722–727.

    Article  CAS  Google Scholar 

  21. McKeehan WL, Adams PS, Rosser MP . Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res 1984; 44: 1998–2010.

    CAS  PubMed  Google Scholar 

  22. MacDonald A, Habib FK . Divergent responses to epidermal growth factor in hormone sensitive and insensitive human prostate cancer cell lines. Br J Cancer 1992; 65: 177–182.

    Article  CAS  Google Scholar 

  23. Culig Z et al. Activation of the androgen receptor by polypeptide growth factors and cellular regulators. World J Urol 1995; 13: 285–289.

    Article  CAS  Google Scholar 

  24. Dozmorov I, Centola M . An associative analysis of gene expression array data. Bioinformatics 2003; 19: 204–211.

    Article  CAS  Google Scholar 

  25. Jarvis JN et al. Novel approaches to gene expression analysis of active polyarticular juvenile rheumatoid arthritis. Arthritis Res Ther 2003; 6: R15–R32.

    Article  Google Scholar 

  26. Dozmorov I et al. Connective molecular pathways of experimental bladder inflammation. Physiol Genomics 2003; 15: 209–222.

    Article  CAS  Google Scholar 

  27. Dozmorov I et al. Neurokinin 1 receptors and neprilysin modulation of mouse bladder gene regulation. Physiol Genomics 2003; 12: 239–250.

    Article  CAS  Google Scholar 

  28. Toh H, Horimoto K . Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics 2002; 18: 287–297.

    Article  CAS  Google Scholar 

  29. Härle P et al. Differential effect of murine alpha/beta interferon transgenes on antagonization of herpes simplex virus type 1 replication. J Virol 2002; 76: 6558–6567.

    Article  Google Scholar 

  30. Knee DA et al. Structure–function analysis of Bag1 proteins. Effects on androgen receptor transcriptional activity. J Biol Chem 2001; 279: 12718–12724.

    Article  Google Scholar 

  31. Briknarova K et al. Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat Struct Biol 2001; 8: 349–352.

    Article  CAS  Google Scholar 

  32. Xiao N, DeFranco DB . Overexpression of unliganded steroid receptors activates endogenous heat shock factor. Mol Endocrinol 1997; 11: 1365–1374.

    Article  CAS  Google Scholar 

  33. Bailey CK et al. Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy. Hum Mol Genet 2002; 11: 515–523.

    Article  CAS  Google Scholar 

  34. LeClerc S et al. Molecular cloning and characterization of a factor that binds the human glucocorticoid receptor gene and represses its expression. J Biol Chem 1991; 266: 17333–17340.

    CAS  PubMed  Google Scholar 

  35. Campbell DH, Sutherland RL, Daly RJ . Signaling pathways and structural domains required for phosphorylation of EMS1/cortactin. Cancer Res 1999; 59: 5376–5385.

    CAS  PubMed  Google Scholar 

  36. Thomas CY et al. Spontaneous activation and signaling by overexpressed epidermal growth factor receptors in glioblastoma cells. Int J Cancer 2003; 104: 19–27.

    Article  CAS  Google Scholar 

  37. Sun M et al. Activation of phosphatidylinositol 3-kinase/Akt pathway by androgen through interaction of p85α, androgen receptor, and Src. J Biol Chem 2003; 278: 42992–43000.

    Article  CAS  Google Scholar 

  38. Chen T, Wang LH, Farrar WL . Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res 2000; 60: 2132–2135.

    CAS  PubMed  Google Scholar 

  39. Yang L et al. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem Biophys Res Commun 2003; 305: 462–469.

    Article  CAS  Google Scholar 

  40. Mahendroo MS, Cala KM, Russell DW . 5 α-reduced androgens play a key role in murine parturition. Mol Endocrinol 1996; 10: 380–392.

    CAS  PubMed  Google Scholar 

  41. Rizner TL et al. Human type 3 3α-hydroxysteroid dehydrogenase (aldo-keto reductase 1C2) and androgen metabolism in prostate cells. Endocrinology 2003; 144: 2922–2932.

    Article  CAS  Google Scholar 

  42. Lin H-K et al. Expression and characterization of recombinant type 2 3α-hydroxysteroid dehydrogenase (HSD) from human prostate: demonstration of bifunctional 3α/17β-HSD activity and cellular distribution. Mol Endocrinol 1997; 11: 1971–1984.

    CAS  PubMed  Google Scholar 

  43. Torn S et al. Production, purification, and functional analysis of recombinant human and mouse 17β-hydroxysteroid dehydrogenase type 7. Biochem Biophys Res Commun 2003; 305: 37–45.

    Article  CAS  Google Scholar 

  44. Connolly JM, Rose DP . Production of epidermal growth factor and transforming growth factor-α by the androgen-responsive LNCaP human prostate cancer cell line. Prostate 1990; 16: 209–218.

    Article  CAS  Google Scholar 

  45. Sehgal I et al. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells. Mol Biol Cell 1994; 5: 339–347.

    Article  CAS  Google Scholar 

  46. Schuurmans AL et al. Regulation of growth and epidermal growth factor receptor levels of LNCaP prostate tumor cells by different steroids. Int J Cancer 1988; 42: 917–922.

    Article  CAS  Google Scholar 

  47. Sherwood ER et al. Epidermal growth factor receptor activation in androgen-independent but not androgen-stimulated growth of human prostatic carcinoma cells. Br J Cancer 1998; 77: 855–861.

    Article  CAS  Google Scholar 

  48. Kondapaka BS, Reddy KB . Tyrosine kinase inhibitor as a novel signal transduction and antiproliferative agent: prostate cancer. Mol Cell Endocrinol 1996; 117: 53–58.

    Article  CAS  Google Scholar 

  49. Stoner E . The clinical development of a 5α-reductase inhibitor, finasteride. J Steroid Biochem Mol Biol 1990; 37: 375–378.

    Article  CAS  Google Scholar 

  50. Iversen P et al. Bicalutamide monotherapy compared with castration in patients with nonmetastatic locally advanced prostate cancer: 6.3 years of followup. J Urol 2000; 164: 1579–1582.

    Article  CAS  Google Scholar 

  51. See WA et al. Bicalutamide as immediate therapy either alone or as adjuvant to standard care of patients with localized or locally advanced prostate cancer: first analysis of the early prostate cancer program. J Urol 2002; 168: 429–435.

    Article  CAS  Google Scholar 

  52. de Vere White R et al. Human androgen receptor expression in prostate cancer following androgen ablation. Eur Urol 1997; 31: 1–6.

    Article  CAS  Google Scholar 

  53. van der Kwast TH, Tetu B . Androgen receptors in untreated and treated prostatic intraepithelial neoplasia. Eur Urol 1996; 30: 265–268.

    Article  CAS  Google Scholar 

  54. El Sheikh SS et al. Androgen-independent prostate cancer: potential role of androgen and ErbB receptor signal transduction crosstalk. Neoplasia 2003; 5: 99–109.

    Article  CAS  Google Scholar 

  55. Orio F et al. Potential action of IGF-1 and EGF on androgen receptor nuclear transfer and transactivation in normal and cancer human prostate cell lines. Mol Cell Endocrinol 2002; 198: 105–114.

    Article  CAS  Google Scholar 

  56. Jones HE et al. Effect of an EGF-R selective tyrosine kinase inhibitor and an anti-androgen on LNCaP cells: identification of divergent growth regulatory pathways. Prostate 2001; 49: 38–47.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH Grant DK54925 to HKL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-K Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmerman, R., Dozmorov, I., Nunlist, E. et al. 5α-Androstane-3α,17β-diol activates pathway that resembles the epidermal growth factor responsive pathways in stimulating human prostate cancer LNCaP cell proliferation. Prostate Cancer Prostatic Dis 7, 364–374 (2004). https://doi.org/10.1038/sj.pcan.4500761

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4500761

Keywords

This article is cited by

Search

Quick links