Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

New genes associated with schizophrenia in neurite formation: a review of cell culture experiments

A Corrigendum to this article was published on 27 August 2007

Abstract

New genes consistently associated with schizophrenia include NRG1, Akt, DISC-1 and dysbindin-1. Since these genes participate in neurotransmission, neuroplasticity and neurodevelopment it has not been easy to elucidate which of these roles are abnormal in patients with schizophrenia. Neurite formation is identified as a crucial stage in development, and it is proposed that a defect in neurite formation originating from abnormally encoded proteins by these new genes could be at least an in vitro marker that reflects the most consistent molecular and neuroanatomical findings in schizophrenia. A systematic review of the literature linking the process of neurite formation to genes with replicated evidence that supported their association with schizophrenia was conducted. In addition, an outline of the process of neurite formation was included. Neurite formation was shown to be induced by neuregulins, the product of the gene NRG1. The activation of Akt, a serine/threonine kinase, promoted neurite formation in six independent studies. Conversely, two studies found that Akt inhibits neurite outgrowth. Stronger evidence supporting an association with the new genes related to schizophrenia and neurite formation comes from DISC-1. Defects in DISC-1 protein were shown to directly alter the process of neurite formation. Dysbindin-1 has not yet been directly implicated in neurite outgrowth. These findings suggest that the proteins encoded by NRG1, Akt and DISC-1 are implicated in the process of neurite formation in cellular models as well as, at least in part, animal models during development. Abnormalities in this process could have potential etiologic implications for schizophrenia. Direct evidence, however, of abnormal neurite formation in patients with schizophrenia is still missing. Limitations to this model are identified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Weinberger DR . The pathogenesis of schizophrenia: a neurodevelopmental theory. In: Nasrallah HAW, Weinberger DR (eds). The Neurology of Schizophrenia. Elsevier: Amsterdam, 1986, pp 397–406.

    Google Scholar 

  2. Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669.

    Article  CAS  PubMed  Google Scholar 

  3. Weinberger DR . From neuropathology to neurodevelopment. Lancet 1995; 346: 552–557.

    Article  CAS  PubMed  Google Scholar 

  4. Harrison PJ . The neuropathology of schizophrenia: a critical review of the data and their interpretation. Brain 1999; 122: 593–624.

    Article  PubMed  Google Scholar 

  5. Marenco S, Weinberger DR . The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol 2000; 12: 501–527.

    Article  CAS  PubMed  Google Scholar 

  6. Eastwood SL . The synaptic pathology of schizophrenia: is aberrant neurodevelopment and plasticity to blame? Int Rev Neurobiol 2004; 59: 47–72.

    Article  CAS  PubMed  Google Scholar 

  7. Arnold SE, Talbot K, Hahn CG . Neurodevelopment, neuroplasticity, and new genes for schizophrenia. Prog Brain Res 2005; 147: 319–345.

    Article  CAS  PubMed  Google Scholar 

  8. Owen MJ, Williams NM, O’Donovan MC . The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004; 9: 14–27.

    Article  CAS  PubMed  Google Scholar 

  9. Norton N, Williams HJ, Owen MJ . An update on the genetics of schizophrenia. Curr Opin Psychiatry 2006; 19: 158–164.

    Article  PubMed  Google Scholar 

  10. Maier W, Zobel A, Kuhn KU . Clinical impact of recently detected susceptibility genes for schizophrenia. Dialog Clin Neurosci 2006; 8: 79–84.

    Google Scholar 

  11. Cannon TD, Hennah W, van Erp TGM, Thompson PM, Lonnqvist J, Huttunen M et al. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short-and long-term memory. Arch Gen Psychiatry 2005; 62: 1205–1213.

    Article  CAS  PubMed  Google Scholar 

  12. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CAM et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  13. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68.

    Article  CAS  PubMed  Google Scholar 

  14. Emamian E, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA . Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat Genet 2004; 36: 131–137.

    Article  CAS  PubMed  Google Scholar 

  15. Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y et al. A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 2005; 7: 1167–1178.

    Article  PubMed  CAS  Google Scholar 

  16. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fuji K et al. Disrupted-in-schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 2003; 100: 289–294.

    Article  CAS  PubMed  Google Scholar 

  17. Van Horn JD, McManus IC . Ventricular enlargement in schizophrenia. A meta-analysis of studies of the ventricle:brain ratio. Br J Psychiatry 1992; 160: 687–697.

    Article  CAS  PubMed  Google Scholar 

  18. Lawrie SM, Abukmeil SS . Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 1998; 172: 110–120.

    Article  CAS  PubMed  Google Scholar 

  19. Andreasen NC, Flashman L, Flaum M, Arndt S, Swayze V II, O’Leary DR et al. Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging. JAMA 1994; 272: 1763–1769.

    Article  CAS  PubMed  Google Scholar 

  20. Baare WFC, van Oel CJ, Hulshof Pol HE, Schnack H, Sitskoorn MM, Kahn RX . Volumes of brain structures in twins discordant for schizophrenia. Arch Gen Psychiatry 2001; 58: 33–40.

    Article  CAS  PubMed  Google Scholar 

  21. Gur RE, Mozley PD, Shtasel DL, Cannon TD, Glaacher F, Turetsky B et al. Clinical subtypes of schizophrenia: differences in brain and CSF volume. Am J Psychiatry 1994; 151: 343–350.

    Article  CAS  PubMed  Google Scholar 

  22. Woods BT, Ward KE, Johnson EH . Meta-analysis of the time-course of brain volume reduction in schizophrenia: implications for pathogenesis and early treatment. Schizophr Res 2005; 73: 221–228.

    Article  PubMed  Google Scholar 

  23. Wright IC, Rabe-Hesketh S, Woodruff PWR, David AS, Murray RM, Bullmore ET . Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 2000; 157: 16–25.

    Article  CAS  PubMed  Google Scholar 

  24. Nelson MD, Saykin AJ, Flashman LA, Riordan JH . Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry 1998; 55: 433–440.

    Article  CAS  PubMed  Google Scholar 

  25. Selemon LD, Rajkowska G, Goldman-Rakic PS . Abnormally high neuronal density in schizophrenic cortex: a morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 1995; 52: 805–818.

    Article  CAS  PubMed  Google Scholar 

  26. Selemon LD, Goldman-Rakic PS . The reduced neurophil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999; 45: 17–25.

    Article  CAS  PubMed  Google Scholar 

  27. Selemon LD . Increased cortical neuronal density in schizophrenia. Am J Psychiatry 2004; 161: 169.

    Article  Google Scholar 

  28. Buxhoeveden D, Roy E, Switala A . Reduced interneuronal space in schizophrenia. Biol Psychiatry 2000; 47: 681–683.

    Article  CAS  PubMed  Google Scholar 

  29. Gilbert CD, Kelly JP . The projections of cells in different layers of the cat's visual cortex. J Comp Neurol 1975; 63: 81–106.

    Article  Google Scholar 

  30. Lund JS, Lund RD, Hendrickson AE, Bunt AH, Fuchs AF . The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J Comp Neurol 1975; 164: 287–304.

    Article  CAS  PubMed  Google Scholar 

  31. Zaidel DW, Esiri MM, Harrison PJ . Size, shape, and orientation of neurons in the left and right hippocampus: investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiatry 1997; 154: 812–818.

    Article  CAS  PubMed  Google Scholar 

  32. Arnold SE, Franz BP, Gur RC, Gur RE, Shapiro RM, Moberg PJ et al. Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortical–hippocampal interactions. Am J Psychiatry 1995; 152: 738–748.

    Article  CAS  PubMed  Google Scholar 

  33. Benes FM, Sorensen I, Bird ED . Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull 1991; 17: 597–608.

    Article  CAS  PubMed  Google Scholar 

  34. Arnold SE, Lee VM-Y, Gur RE, Trojanowski JQ . Abnormal expression of two microtubule-associated proteins (MAP2 and MAP5) in specific subfields of the hippocampal formation in schizophrenia. Proc Natl Acad Sci USA 1991; 88: 10850–10854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jones LB, Johnson N, Byne W . Alterations in MAP2 immunocytochemistry in area 9 and 32 of schizophrenic prefrontal cortex. Psychiatry Res 2002; 114: 137–148.

    Article  CAS  PubMed  Google Scholar 

  36. Kalus P, Müller JT, Zuschratter W, Senitz D . The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. Neuroreport 2000; 11: 3621–3625.

    Article  CAS  PubMed  Google Scholar 

  37. Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann JJ, Latov N et al. Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings. Arch Gen Psychiatry 2000; 57: 349–356.

    Article  CAS  PubMed  Google Scholar 

  38. Friston KJ . The disconnection hypothesis. Schizophr Res 1998; 30: 115–125.

    Article  CAS  PubMed  Google Scholar 

  39. Friston KJ, Frith CD . Schizophrenia: a disconnection syndrome? Clin Neurosci 1995; 3: 89–97.

    CAS  PubMed  Google Scholar 

  40. Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezai K, Pronto LL et al. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Natl Acad Sci USA 1996; 93: 9985–9990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bullmore ET, Woodruff PW, Wright IC, Rabe-Hesketh S, Howard RJ, Shuriquie N et al. Does dysplasia cause anatomical disconnectivity in schizophrenia? Schizophr Res 1998; 30: 127–135.

    Article  CAS  PubMed  Google Scholar 

  42. Goldberg JL . How does an axon grow? Genes Dev 2003; 17: 941–958.

    Article  CAS  PubMed  Google Scholar 

  43. McAllister AK . Cellular and molecular mechanisms of dendrite growth. Cereb Cortex 2000; 10: 963–973.

    Article  CAS  PubMed  Google Scholar 

  44. Tucker KL, Meyer M, Barde YA . Neurotrophins are required for nerve growth during development. Nat Neurosci 2001; 4: 29–37.

    Article  CAS  PubMed  Google Scholar 

  45. Labelle C, Leclerc N . Exogenous BDNF, NT-3 and NT-4 differentially regulate neurite outgrowth in cultured hippocampal neurons. Brain Res Dev Brain Res 2000; 123: 1–11.

    Article  CAS  PubMed  Google Scholar 

  46. Mendell LM, Munson JB, Arvanian VL . Neurotrophins and synaptic plasticity in the mammalian spinal cord. J Physiol 2001; 533: 91–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clendinnen BG, Eayrs JT . The anatomical and physiological effects of prenatally administered somatotrophin on cerebral development in rats. J Endocrinol 1961; 22: 183–193.

    Article  CAS  PubMed  Google Scholar 

  48. Francon J, Fellous A, Lennon AM, Nunez J . Is thyroxine a regulatory signal for neurotubule assembly during brain development? Nature 1977; 266: 188–190.

    Article  CAS  PubMed  Google Scholar 

  49. Nunez J . Microtubules and brain development: the effects of thyroid hormones. Neurochem Int 1985; 7: 959–968.

    Article  CAS  PubMed  Google Scholar 

  50. Hargreaves A, Yusta B, Aranda A, Avila J, Pacual A . Triiodothyronine (T3) induces neurite formation and increases synthesis of a protein related to MAP1B in cultured cells of neuronal origin. Brain Res 1988; 466: 141–148.

    Article  CAS  PubMed  Google Scholar 

  51. Benitez-King G, Huerto-Delgadillo L, Anton-Tay F . Melatonin effects on the cytoskeletal organization of MDCK and neuroblastoma N1E-115 cells. J Pineal Res 1990; 9: 209–220.

    Article  CAS  PubMed  Google Scholar 

  52. Rauvala H, Peng HB . HB-GAM (heparin-binding growth-associated molecule) and heparin-type glycans in the development and plasticity of neuron-target contacts. Prog Neurobiol 1997; 52: 127–144.

    Article  CAS  PubMed  Google Scholar 

  53. Joester A, Faissner A . The structure and function of tenascins in the nervous system. Matrix Biol 2001; 20: 13–22.

    Article  CAS  PubMed  Google Scholar 

  54. Brose K, Tessier-Lavigne M . Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr Opin Nuerobiol 2000; 20: 95–102.

    Article  Google Scholar 

  55. Spitzer NC . Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients. J Physicol 2002; 96: 73–80.

    CAS  Google Scholar 

  56. Chang S, DeCamilli P . Glutamate regulates actin-based motility in axonal filopodia. Nat Neurosci 2001; 4: 783–793.

    Article  Google Scholar 

  57. Da Silva JS, Dotti CG . Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 2002; 3: 694–704.

    Article  CAS  PubMed  Google Scholar 

  58. Dotti CG, Sullivan CA, Banker GA . The establishment of polarity by hippocampal neurons in culture. J Neurosci 1988; 8: 1454–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tang D, Goldberg DJ . Bundling of microtubules in the growth cone induced by laminin. Mol Cell Neurosci 2000; 15: 303–313.

    Article  CAS  PubMed  Google Scholar 

  60. Yu W, Ling C, Baas PW . Microtubule reconfiguration during axogenesis. J Neurocytol 2001; 30: 861–875.

    Article  CAS  PubMed  Google Scholar 

  61. Dehmelt L, Halpain S . Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol 2004; 58: 18–33.

    Article  CAS  PubMed  Google Scholar 

  62. Meyer G, Feldman EL . Signaling mechanisms that regulate actin-based motility processes in the nervous system. J Neurochem 2002; 83: 490–503.

    Article  CAS  PubMed  Google Scholar 

  63. Luo L . Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Cell Biol 2002; 18: 601–635.

    Article  CAS  Google Scholar 

  64. Schaefer AW, Kabir N, Forscher P . Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 2002; 158: 139–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tilney LG, Bonder EM, DeRosier DJ . Actin filaments elongate from their membrane-associated ends. J Cell Biol 1981; 90: 485–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith SJ . Neuronal cytomechanics: the actin-based motility of growth cones. Science 1988; 242: 708–715.

    Article  CAS  PubMed  Google Scholar 

  67. Lin CH, Espreafico EM, Mooseker MS, Forscher P . Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 1996; 16: 782–796.

    Article  Google Scholar 

  68. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A . The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992; 70: 401–410.

    Article  CAS  PubMed  Google Scholar 

  69. Nobes CD, Hall A . Rho, rac and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with stress fibers, lamellipodia and filopodia. Cell 1995; 81: 53–62.

    Article  CAS  PubMed  Google Scholar 

  70. Caceres A, Mautino J, Kosik KS . Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 1992; 9: 607–618.

    Article  CAS  PubMed  Google Scholar 

  71. Caceres A, Kosik KS . Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 1994; 343: 451–463.

    Google Scholar 

  72. Harada A, Teng J, Takei Y, Oguchi K, Hirokawa N . MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J Cell Biol 2002; 158: 541–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu CW, Lee G, Jay DG . Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons. Cell Motil Cytoskeleton 1999; 43: 232–242.

    Article  CAS  PubMed  Google Scholar 

  74. Leclerc N, Baas CW, Garner CC, Kosik KS . Juvenile and mature MAP2 isoforms induce distinct patterns of process outgrowth. Mol Biol Cell 1996; 7: 443–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barlow S, Gonzalez-Garay ML, West RR, Olmsted JB, Cabral F . Stable expression of heterologous microtubule-associated proteins (MAPs) in Chinese hamster ovary cells: evidence for differing roles of MAPs in microtubule organization. J Cell Biol 1994; 126: 1017–1029.

    Article  CAS  PubMed  Google Scholar 

  76. Drubin DG, Feinstein SC, Shooter EM, Krischner MW . Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J Cell Biol 1985; 101: 1799–1807.

    Article  CAS  PubMed  Google Scholar 

  77. Drubin D, Kobayashi S, Kellogg D, Krischner M . Regulation of microtubule protein levels during cellular morphogenesis in nerve growth factor-treated PC12 cells. J Cell Biol 1988; 106: 1583–1591.

    Article  CAS  PubMed  Google Scholar 

  78. Mann SS, Hammarback JA . Gene localization and developmental expression of light chain 3: a common subunit of microtubule-associated protein 1A (MAP1A) and MAP1B. J Neurosci Res 1996; 43: 535–544.

    Article  CAS  PubMed  Google Scholar 

  79. Lemke G . Neuregulins in development. Mol Cell Neurosci 1996; 7: 247–262.

    Article  CAS  PubMed  Google Scholar 

  80. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    Article  CAS  PubMed  Google Scholar 

  81. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S et al. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry 2003; 8: 485–487.

    Article  CAS  PubMed  Google Scholar 

  83. Yang JZ, Si TM, Ruan Y, Ling YS, Han YH, Wang XL et al. Association study of neuregulin 1 gene with schizophrenia. Mol Psychiatry 2003; 8: 706–709.

    Article  CAS  PubMed  Google Scholar 

  84. Tang JX, Chen WY, He G, Zhou J, Gu NF, Feng GY et al. Polymorphisms within 5′ end of the neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. Mol Psychiatry 2004; 9: 11–12.

    Article  CAS  PubMed  Google Scholar 

  85. Stefansson H, Steinthorsdottir V, Thorgeirsson TE, Gulcher JR, Stefansson K . Neuregulin 1 and schizophrenia. Ann Med 2004; 36: 62–71.

    Article  CAS  PubMed  Google Scholar 

  86. Iwata N, Suzuki T, Ikeda M, Kitajima T, Yamanouchi Y, Inada T et al. No association with the neuregulin 1 haplotype to Japanese schizophrenia. Mol Psychiatry 2004; 9: 126–127.

    Article  CAS  PubMed  Google Scholar 

  87. Hashimoto R, Straub RE, Weickert CS, Hyde TM, Kleinman JE, Weinberger DR . Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry 2004; 9: 299–307.

    Article  CAS  PubMed  Google Scholar 

  88. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Corfas G, Roy K, Buxbaum JD . Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci 2004; 7: 575–580.

    Article  CAS  PubMed  Google Scholar 

  90. Villegas R, Villegas GM, Longart M, Hernandez M, Maqueira B, Buonanno A et al. Neuregulin found in cultured-sciatic nerve conditioned medium causes neuronal differentiation of PC12 cells. Brain Res 2000; 852: 305–318.

    Article  CAS  PubMed  Google Scholar 

  91. Gamett DC, Greene T, Wagreich AR, Kim HH, Koland JG, Cerione RA . Heregulin-stimulated signaling in rat pheochromocytoma cells. J Biol Chem 1995; 270: 19022–19027.

    Article  CAS  PubMed  Google Scholar 

  92. Vaskovsky A, Lupowitz Z, Erlich S, Pinkas-Kramarski R . Erb-4 activation promotes neurite outgrowth in PC12 cells. J Neurochem 2000; 74: 979–987.

    Article  CAS  PubMed  Google Scholar 

  93. Shigeta M, Sanzen N, Ozawa M, Gu J, Hasegawa H, Sekiguchi K . CD151 regulates epithelial cell–cell adhesion through PKC-and Cdc42-dependent actin cytoskeletal reorganization. J Cell Biol 2003; 163: 165–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pipel Y, Segal M . Activation of PKC induces rapid morphological plasticity in dendrites of hippocampal neurons via Rac and Rho-dependent mechanisms. Eur J Neurosci 2004; 19: 3151–3164.

    Article  Google Scholar 

  95. Rieff HI, Raetzman LT, Sapp DW, Yeh HH, Siegel RE, Corfas G . Neuregulin induces GABAA receptor subunit expression and neurite outgrowth in cerebellar granule cells. J Neurosci 1999; 19: 10757–10766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bermingham-McDonogh O, McCabe KL, Reh TA . Effects of GGF/neuregulins on neuronal survival and neurite outgrowth correlate with erbB2/neu expression in developing retina. Development 1996; 122: 1427–1438.

    CAS  PubMed  Google Scholar 

  97. Pinkas-Kramarski R, Eilam R, Alroy I, Levkowitz G, Lonai P, Yarden Y . Differential expression of NDF/neuregulin receptors ErbB-3 and ErbB-4 and involvement in inhibition of neuronal differentiation. Oncogene 1997; 15: 2803–2815.

    Article  CAS  PubMed  Google Scholar 

  98. Ikeda M, Iwata N, Suzuki T, Kitajima T, Yamanouchi Y, Kinoshita Y et al. Association of AKT1 with schizophrenia confirmed in a Japanese population. Biol Psychiatry 2004; 56: 698–700.

    Article  CAS  PubMed  Google Scholar 

  99. Schwab SG, Hoefgen B, Hanses C, Borrmann Hassenbach M, Albus M, Lerer B et al. Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biol Psychiatry 2005; 58: 446–450.

    Article  CAS  PubMed  Google Scholar 

  100. Bajestan SN, Sabouri AH, Nakamura M, Takashima H, Keikhaee MR, Behdani F et al. Association of AKT1 haplotype with the risk of schizophrenia in Iranian population. Am J Med Genet (Neuropsychitr Genet) 2006; 141: 383–386.

    Article  CAS  Google Scholar 

  101. Ohtsuki T, Inada T, Arinami T . Failure to confirm association between AKT1 haplotype and schizophrenia in a Japanese case-control population. Mol Psychiatry 2004; 9: 981–983.

    Article  CAS  PubMed  Google Scholar 

  102. Liu YL, Fann CS, Liu CM, Wu JY, Hung SI, Chan HY et al. Absence of significant associations between four AKT1 SNP markers and schizophrenia in the Taiwanese population. Psychiatr Genet 2006; 16: 39–41.

    Article  CAS  PubMed  Google Scholar 

  103. Masayuki I, Ohnishi T, Murayama M, Matsumoto I, Yamada K, Iwayama Y et al. Failure to support a genetic contribution of AKT1 polymorphisms and altered AKT signaling in schizophrenia. J Neurochem 2006; 99: 277–287.

    Article  CAS  Google Scholar 

  104. Brunet A, Datta SR, Greenberg ME . Transcription-dependent and independent control of neuronal survival by the PI3-Akt signaling pathway. Curr Opin 2001; 11: 297–305.

    CAS  Google Scholar 

  105. Lawlor MA, Alessi DR . PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 2001; 114: 2903–2910.

    CAS  PubMed  Google Scholar 

  106. Brazil DP, Park J, Hemmings BA . PKB binding proteins. Getting in on the Akt. Cell 2002; 111: 293–303.

    Article  CAS  PubMed  Google Scholar 

  107. Kalkman HO . The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmachol Ther 2006; 110: 117–134.

    Article  CAS  Google Scholar 

  108. Fukunaga K, Kawano T . Akt is a molecular target for signal transduction therapy in brain ischemic insult. J Pharmacol Sci 2003; 92: 317–327.

    Article  CAS  PubMed  Google Scholar 

  109. Hallmayer J . Getting our AKT together in schizophrenia? Nat Genet 2004; 36: 115–116.

    Article  CAS  PubMed  Google Scholar 

  110. Kim AH, Yano H, Cho H, Meyer D, Monks B, Margolis B et al. Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron 2002; 35: 697–709.

    Article  CAS  PubMed  Google Scholar 

  111. Wassef A, Baker J, Kochan LD . GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol 2003; 23: 601–640.

    Article  CAS  PubMed  Google Scholar 

  112. Namikawa K, Honma M, Abe K, Takeda M, Mansur K, Obata T et al. Akt/Protein kinase B prevents injury-induced motoneuron death and accelerates axonal regeneration. J Neurosci 2000; 20: 2875–2886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Markus A, Zhong J, Snider WD . Raf and Akt mediate distinct aspects of sensory axon growth. Neuron 2002; 35: 65–76.

    Article  CAS  PubMed  Google Scholar 

  114. Kim Y, Seger R, Babu S, Hwang SY, Yoo YS . A positive role of the PI3-K/Akt signaling pathway in PC12 cell differentiation. Mol Cells 2004; 18: 353–359.

    CAS  PubMed  Google Scholar 

  115. Riese U, Ziegler E, Hamburger M . Militarinone A induces differentiation in PC12 cells via MAP and Akt kinase signal transduction pathways. FEBS Lett 2004; 577: 455–459.

    Article  CAS  PubMed  Google Scholar 

  116. Laurino L, Wang XX, de la Houssaye BA, Sosa L, Dupraz S, Caceres A et al. PI3K activation by IGF-1 is essential for the regulation of membrane expansion at the nerve growth cone. J Cell Sci 2005; 118: 3653–3663.

    Article  CAS  PubMed  Google Scholar 

  117. Ooms LM, Fedele CG, Astle MV, Ivetac I, Cheung V, Pearson RB et al. The inositiol polyphosphate 5-phosphatase, PIPP, is a novel regulator of phosphoinositide 3-kinase-dependent neurite elongation. Mol Biol Cell 2006; 17: 607–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Higuchi M, Onishi K, Masuyama N, Gotoh Y . The phosphatidylinositol-3 kinase (PI3K)-Akt pathway suppresses neurite branch formation in NGF-treated PC12 cells. Genes Cells 2003; 8: 657–669.

    Article  CAS  PubMed  Google Scholar 

  119. Jiang H, Guo W, Liang X, Rao Y . Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3β and its upstream regulators. Cell 2005; 120: 123–135.

    CAS  PubMed  Google Scholar 

  120. Du K, Montminy M . CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 1998; 273: 32377–32379.

    Article  CAS  PubMed  Google Scholar 

  121. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  CAS  PubMed  Google Scholar 

  122. Kwon T, Kwon DY, Chun J, Kim JH, Kang SS . Akt protein kinase inhibits Rac1-GTP-binding through phosphorylation at serine 71 of Rac1. J Biol Chem 2000; 275: 423–428.

    Article  CAS  PubMed  Google Scholar 

  123. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A . The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992; 70: 401–410.

    Article  CAS  PubMed  Google Scholar 

  124. Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH et al. Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem 2001; 18: 17479–17483.

    Article  Google Scholar 

  125. Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD . NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC. Neuron 2004; 42: 897–912.

    Article  CAS  PubMed  Google Scholar 

  126. Mitchison T, Krishcner M . Cytoskeletal dynamics and nerve growth. Neuron 1988; 1: 761–772.

    Article  CAS  PubMed  Google Scholar 

  127. Bray D . Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci USA 1970; 65: 905–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Feldman EL, Axelrod D, Schwartz M, Heacock AM, Agranoff BW . Studies on the localization of newly added membranes in growing neurites. J Neurobiol 1981; 12: 591–598.

    Article  CAS  PubMed  Google Scholar 

  129. Pfenninger KH, Maylié-Pfenninger MF . Lecitin labeling of sprouting neurons. II. Relative movement and appearance of glycoconjugates during plasmalemmal expansion. J Cell Biol 1981; 89: 547–559.

    Article  CAS  PubMed  Google Scholar 

  130. Craig AM, Wyborski RJ, Banker G . Preferential addition of newly synthesized membrane protein at axonal growth cones. Nature 1995; 375: 592–594.

    Article  CAS  PubMed  Google Scholar 

  131. Xiao J, Zhou Q, Liu Y . Variant PC12 cell line that spontaneously differentiates and extends neuritic processes. J Neurosci Res 2002; 69: 104–109.

    Article  CAS  PubMed  Google Scholar 

  132. Greene LA, Tischler AS . Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 1976; 73: 2424–2428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bang OS, Park EK, Yang S, Lee SY, Franke TF, Kang SS . Overexpression of Akt inhibits NGF-induced growth arrest and neuronal differentiation of PC12 cells. J Cell Sci 2000; 114: 81–88.

    Google Scholar 

  134. Piiper A, Dikic I, Lutz MP, Leser J, Kronenberger B, Elez R et al. Cyclic AMP induces transactivation of the receptors for epidermal growth factor and nerve growth factor, thereby modulating activation of MAP kinase, Akt, and neurite outgrowth in PC12 cells. J Biol Chem 2002; 277: 43623–43630.

    Article  CAS  PubMed  Google Scholar 

  135. Jiang H, Guo W, Liang X, Rao Y . Both the establishment and maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3β and its upstream regulators. Cell 2005; 120: 123–135.

    CAS  PubMed  Google Scholar 

  136. Craig AM, Banker G . Neuronal polarity. Annu Rev Neurosci 1994; 17: 267–310.

    Article  CAS  PubMed  Google Scholar 

  137. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CAM et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  138. Blackwood DHR, Fordyce A, Walker MT, St Clair DM, Proteous DJ, Muir WJ . Schizophrenia and affective disorders-cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001; 69: 428–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sachs NA, Sawa A, Holmes SE, Ross CA, DeLisi LE, Margolis RL . A frameshift mutation in disrupted in schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Mol Psychiatry 2005; 10: 758–764.

    Article  CAS  PubMed  Google Scholar 

  140. Cannon TD, Hennah W, Theo GM, van Erp TGM, Thompson PM, Lonnqvist J et al. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter and impaired short- and long-term memory. Arch Gen Psychiatry 2005; 62: 1205–1213.

    Article  CAS  PubMed  Google Scholar 

  141. Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky PH et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder and bipolar disorder. Am J Hum Genet 2004; 75: 862–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Porteous DJ, Thomson P, Brandon NJ, Millar JK . The genetics and biology of DISC1 and emerging role in psychosis and cognition. Biol Psychiatry 2006; 60: 123–131.

    Article  CAS  PubMed  Google Scholar 

  143. Ishizuka K, Paek M, Kamiya A, Sawa A . A review of disrutped-in-schizophrenia-1 (DISC1): neurodevelopment, cognition and mental conditions. Biol Psychiatry 2006; 59: 1189–1197.

    Article  CAS  PubMed  Google Scholar 

  144. Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T et al. Disrupted-in-schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 2003; 8: 685–694.

    Article  CAS  PubMed  Google Scholar 

  145. Morris JA, Kandpal G, Ma L, Austin CP . DISC1 (disrupted-in-schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF475 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet 2003; 12: 1591–1608.

    Article  CAS  PubMed  Google Scholar 

  146. Bloom L, Horvitz HR . The Caenorhabditis elegans gene unc-76 and its human homologous define a new gene family involved in axonal outgrowth and fasciculation. Proc Natl Acad Sci USA 1997; 94: 3414–3419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kuroda S, Nakagawa N, Tokunaga C, Tatematsu K, Tanizawa K . Mammalian homologue of the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth is a protein kinase C ξ-interacting protein. J Cell Biol 1999; 144: 403–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Straub RE, Jiang Y, MacLean DJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Datta SR, Rizig MA, McQuillin A, Kalsi G, Lawrence J, Quested D et al. Tests of linkage disequilibrium between schizophrenia and genetic markers at the G72 and dysbindin loci. In: Barden N, Cote M, DeLisi L, Gill M, Kelosoe J, Schalling M (eds). XIth World Congress of Psychiatric Genetics. Quebec, 2003, pp 131–172.

    Google Scholar 

  150. Van den Oord EJ, Sullivan PF, Jiang Y, Walsh D, O’Neill FA, Kendler KS et al. Identification of a high-risk haplotype for the dystroberdin binding pretion 1 (DTNBP1) gene in the Irish study of high-density schizophrenia families. Mol Psychiatry 2003; 8: 499–510.

    Article  CAS  PubMed  Google Scholar 

  151. Bakker SC, Hoogendoom MLC, Sinke RJ, Verzibergen KF, Kusters KA, Otten HG et al. Association study of the neuregulin, dysbindin and G72 genes in a large sample of Dutch schizophrenic patients. In: Barden N, Cote M, DeLisi L, Gill M, Kelosoe J, Schalling M (eds). XIth World Congress of Psychiatric Genetics. Quebec, 2003, p 19.

    Google Scholar 

  152. Van Den Bogaert A, Schimacher J, Schulze TG, Otte AC, Ohlraun S, Kovalenko S et al. The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. Am J Hum Genet 2003; 73: 1438–1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shi YY, Zhao XZ, Tang JX, Gu NF, Feng GY, Zhu SM et al. Non-family based association study of DBTNBP1 in 6p22.3 and schizophrenia in geographically and genetically structured Chinese Han population. In: Barden N, Cote M, DeLisi L, Gill M, Kelosoe J, Schalling M (eds). XIth World Congress of Psychiatric Genetics. Quebec, 2003, p 102.

    Google Scholar 

  154. Tang JX, Zhou J, Fan JB, Li XW, Shi YY, Gu NF et al. Family-based association study of DTNBP1 in 6p22.3 and schizophrenia. Mol Psychiatry 2003; 8: 717–718.

    Article  CAS  PubMed  Google Scholar 

  155. Yamada K, Detera-Wadleigh SD, Iwayama-Shigeno Y, Toyota T, Corona W, Hattori E et al. Suggestive evidence of association between the DTNBP1 gene and schizophrenia in the Japanese samples. In: Barden N, Cote M, DeLisi L, Gill M, Kelosoe J, Schalling M (eds). XIth World Congress of Psychiatric Genetics. Quebec, 2003, p 102.

    Google Scholar 

  156. Numakawa T, Yagasaki Y, Ishimoto T, Okada T, Suzuki T, Iwata N et al. Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 2004; 13: 1699–1708.

    Article  Google Scholar 

  157. Benson MA, Newey SE, Martin-Rendon E, Hawkes R, Blake DJ . Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobervins in muscle and brain. J Biol Chem 2001; 276: 24232–24241.

    Article  CAS  PubMed  Google Scholar 

  158. Risch N . Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 1990; 46: 222–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Li BS, Ma W, Jaffe H, Zheng Y, Takahashi S, Zhang L et al. Cyclin-dependent kinase-5 is involved in neuregulin-dependent activation of phosphatidylinositol 3-kinase and Akt activity mediating neuronal survival. J Biol Chem 2003; 278: 35702–35709.

    Article  CAS  PubMed  Google Scholar 

  160. Gambarotta G, Garzotto D, Destro E, Mautino B, Giampietro C, Cutrupi S et al. ErbB4 expression in neural progenitor cells (ST14A) is necessary to mediate neuregulin-1beta1-induced migration. J Biol Chem 2004; 279: 48808–48816.

    Article  CAS  PubMed  Google Scholar 

  161. Hashimoto R, Numakawa T, Ohnishi T, Kumamaru E, Yagasaki Y, Ishimoto T et al. Impact of the DISC1 Ser704Cys polymorphism on risk for major depression, brain morphology and ERK signaling. Hum Mol Genet 2006; 15: 3024–3033.

    Article  CAS  PubMed  Google Scholar 

  162. McGrath J, Murray R . Risk factors for schizophrenia: form conception to birth. In: Hirsh SR, Weinberger DR (eds). Schizophrenia. Blackwell: Malden, MA, 1995, pp 232–250.

    Google Scholar 

  163. Bagalkote H, Pang D, Jones PB . Maternal influenza and schizophrenia in offspring. Int J Ment Health 2001; 39: 3–21.

    Google Scholar 

  164. Nuechterlein KH, Dawson ME . A heuristic vulnerability/stress model of schizophrenic episodes. Schizophr Bull 1984; 10: 300–312.

    Article  CAS  PubMed  Google Scholar 

  165. Hillier SL, Witkin SS, Krohn MA, Watts DH, Kiviat NB, Eschenbach DA . The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Am J Obstet Gynecol 1993; 81: 941–948.

    CAS  Google Scholar 

  166. Fortunato SJ, Menon RP, Swan KF, Menon R . Inflammatory cytokines (interleukins 1,6,8 and tumor necrosis factor-α) release form cultured fetal membranes in response to endotoxic lipopolysaccharide mirrors amniotic fluid. Am J Obstet Gynecol 1996; 174: 1855–1862.

    Article  CAS  PubMed  Google Scholar 

  167. Yoon BH, Romero R, Moon J, Chaiworapongsa T, Espinoza J, Kim YM . Differences in the fetal interleukin-6 response to microbial invasion of the amniotic cavity between term and preterm gestation. J Matern Fetal Neonatal Med 2003; 13: 32–38.

    Article  CAS  PubMed  Google Scholar 

  168. Gilmore JH, Jarskog LF, Vadlamudi S, Lauder JM . Prenatal infection and risk for schizophrenia: IL-6, IL-Iβ and TNFα inhibit cortical neuron dendrite development. Neuropsychopharmacology 2004; 29: 1221–1229.

    Article  CAS  PubMed  Google Scholar 

  169. Stevens KE, Johnson RG, Rose GM . Rats reared in social isolation show schizophrenia-like changes in auditory gating. Pharmacol Biochem Behav 1997; 58: 1031–1036.

    Article  CAS  PubMed  Google Scholar 

  170. Silva-Gomez AB, Rojas D, Juarez I, Flores G . Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 2003; 983: 128–136.

    Article  CAS  PubMed  Google Scholar 

  171. Hoffman RE, McGlashan TH . Synaptic elimination, neurodevelopment, and the mechanism of hallucinated ‘voices’ in schizophrenia. Am J Psychiatry 1997; 154: 1683–1689.

    Article  CAS  PubMed  Google Scholar 

  172. Waddington JL . Schizophrenia: developmental neuroscience and pathobiology. Lancet 1993; 341: 531–536.

    Article  CAS  PubMed  Google Scholar 

  173. McGlashan TH, Hofman RE . Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 2000; 57: 637–648.

    Article  CAS  PubMed  Google Scholar 

  174. Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson AW et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 2001; 98: 11650–11655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Lewis DA, Gonzalez-Burgos G . Intrinsic excitatory connections in the prefrontal cortex and the pathophysiology of schizophrenia. Brain Res Bull 2000; 52: 309–317.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Dr John H Coverdale for his encouragement and thorough editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Bellon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellon, A. New genes associated with schizophrenia in neurite formation: a review of cell culture experiments. Mol Psychiatry 12, 620–629 (2007). https://doi.org/10.1038/sj.mp.4001985

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001985

Keywords

This article is cited by

Search

Quick links