Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Chromaffin cell function and structure is impaired in corticotropin-releasing hormone receptor type 1-null mice

Abstract

Corticotropin-releasing hormone (CRH) is both a main regulator of the hypothalamic-pituitary-adrenocortical axis and the autonomic nervous system. CRH receptor type 1 (CRHR1)-deficient mice demonstrate alterations in behavior, impaired stress responses with adrenocortical insufficiency and aberrant neuroendocrine development, but the adrenal medulla has not been analyzed in these animals. Therefore we studied the production of adrenal catecholamines, expression of the enzyme responsible for catecholamine biosynthesis neuropeptides and the ultrastructure of chromaffin cells in CRHR1 null mice. In addition we examined whether treatment of CRHR1 null mice with adrenocorticotropic hormone (ACTH) could restore function of the adrenal medulla. CRHR1 null mice received saline or ACTH, and wild-type or heterozygous mice injected with saline served as controls. Adrenal epinephrine levels in saline-treated CRHR1 null mice were 44% those of controls (P<0.001), and the phenylethanolamine N-methyltransferase (PNMT) mRNA levels in CRHR1 null mice were only 25% of controls (P <0.001). ACTH treatment increased epinephrine and PNMT mRNA level in CRHR1 null mice but failed to restore them to normal levels. Proenkephalin mRNA in both saline- and ACTH-treated CRHR1 null mice were higher than in control animals (215.8% P <0.05, 268.9% P <0.01) whereas expression of neuropeptide Y and chromogranin B did not differ. On the ultrastructural level, chromaffin cells in saline-treated CRHR1 null mice exhibited a marked depletion in epinephrine-storing secretory granules that was not completely normalized by ACTH-treatment. In conclusion, CRHR1 is required for a normal chromaffin cell structure and function and deletion of this gene is associated with a significant impairment of epinephrine biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chrousos GP, Gold PW . The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis JAMA 1992 267: 1244–1252

    Article  CAS  Google Scholar 

  2. Bornstein SR, Chrousos GP . Clinical Review: adrenocorticotropin (ACTH)- and non-ACTH mediated regulation of the adrenal cortex. Neural and immune inputs J Clin Endocrinol Metab 1999 84: 1729–1736

    Article  CAS  Google Scholar 

  3. Muglia LJ, Jacobson L, Weninger SC, Luedeke CE, Bae DS, Jeong KH, Majzoub JA . Impaired diurnal adrenal rhythmicity restored by constant infusion of corticotropin-releasing hormone in corticotropin-releasing hormone-deficient mice J Clin Invest 1997 99: 2923–2929

    Article  CAS  Google Scholar 

  4. Muglia L, Jacobson L, Dikkes P, Majzoub JA . Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need Nature 1995 373: 427–432

    Article  CAS  Google Scholar 

  5. Coste SC, Kesterson RA, Heldwein KA, Stevens SL, Heard AD, Hollis JH et al. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2 Nat Genet 2000 24: 403–409

    Article  CAS  Google Scholar 

  6. Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor Nat Genet 1998 19: 162–166

    Article  CAS  Google Scholar 

  7. Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development Neuron 1998 20: 1093–1102

    Article  CAS  Google Scholar 

  8. Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress Nat Genet 2000 24: 410–414

    Article  CAS  Google Scholar 

  9. Stenzel-Poore MP, Duncan JE, Rittenberg MB, Bakke AC, Heinrichs SC . CRH overproduction in transgenic mice: behavioral and immune system modulation Ann N Y Acad Sci 1996 780: 36–48

    Article  CAS  Google Scholar 

  10. Stenzel-Poore MP, Cameron VA, Vaughan J, Sawchenko PE, Vale W . Development of Cushing's syndrome in corticotropin-releasing factor transgenic mice Endocrinology 1992 130: 3378–3386

    Article  CAS  Google Scholar 

  11. Burrows HL, Nakajima M, Lesh JS, Goosens KA, Samuelson LC, Inui A et al. Excess corticotropin releasing hormone-binding protein in the hypothalamic-pituitary-adrenal axis in transgenic mice J Clin Invest 1998 101: 1439–1447

    Article  CAS  Google Scholar 

  12. Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA, Vinson GP . Intraadrenal interactions in the regulation of adrenocortical steroidogenesis Endocr Rev 1998 19: 101–143

    Article  CAS  Google Scholar 

  13. Axelrod J, Reisine TD . Stress hormones: their interaction and regulation Science 1984 224: 452–459

    Article  CAS  Google Scholar 

  14. Wurtman RJ, Axelrod J . Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids J Biol Chem 1966 241: 2301–2305

    CAS  PubMed  Google Scholar 

  15. Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A et al. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation Genes Dev 1995 9: 1608–1621

    Article  CAS  Google Scholar 

  16. Bornstein SR, Tajima T, Eisenhofer G, Haidan A, Aguilera G . Adrenomedullary function is severely impaired in 21-hydroxylase-deficient mice FASEB J 1999 13: 1185–1194

    Article  CAS  Google Scholar 

  17. Merke DP, Chrousos GP, Eisenhofer G, Weise M, Keil MF, Rogol AD et al. Adrenomedullary dysplasia and hypofunction in patients with classic 21-hydroxylase deficiency N Engl J Med 2000 343: 1362–1368

    Article  CAS  Google Scholar 

  18. Bornstein SR, Breidert M, Ehrhart-Bornstein M, Kloos B, Scherbaum WA . Plasma catecholamines in patients with Addison's disease Clin Endocrinol (Oxf) 1995 42: 215–218

    Article  CAS  Google Scholar 

  19. Willenberg HS, Bornstein SR, Hiroi N, Path G, Goretzki PE, Scherbaum WA, Chrousos GP . Effects of a novel corticotropin-releasing-hormone receptor type I antagonist on human adrenal function Mol Psychiatry 2000 5: 137–141

    Article  CAS  Google Scholar 

  20. Hoheisel G, Schauer J, Scherbaum WA, Bornstein SR . The effect of corticotropin-releasing hormone (CRH) on the adrenal medulla in hypophysectomized rats Histol Histopathol 1998 13: 81–87

    CAS  PubMed  Google Scholar 

  21. Venihaki M, Gravanis A, Margioris AN . Comparative study between normal rat chromaffin and PC12 rat pheochromocytoma cells: production and effects of corticotropin-releasing hormone Endocrinology 1997 138: 698–704

    Article  CAS  Google Scholar 

  22. Eisenhofer G, Goldstein DS, Stull R, Keiser HR, Sunderland T, Murphy DL, Kopin IJ . Simultaneous liquid-chromatographic determination of 3,4-dihydroxyphenylglycol, catecholamines, and 3,4-dihydroxyphenylalanine in plasma, and their responses to inhibition of monoamine oxidase Clin Chem 1986 32: 2030–2033

    CAS  PubMed  Google Scholar 

  23. Heid CA, Stevens J, Livak KJ, Williams PM . Real time quantitative PCR Genome Res 1996 6: 986–994

    Article  CAS  Google Scholar 

  24. Vale W, Spiess J, Rivier C, Rivier J . Characterization of a 41 residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin Science 1981 213: 1394–1397

    Article  CAS  Google Scholar 

  25. Koob GF, Heinrichs SC, Menzaghi F, Pich EM, Britton KT . Corticotropin releasing factor, stress and behavior Sem in the Neurosci 1994 6: 221–229

    Article  CAS  Google Scholar 

  26. Sutton RE, Koob GF, Le Moal M, Rivier J, Vale W . Corticotropin releasing factor produces behavioural activation in rats Nature 1982 297: 331–333

    Article  CAS  Google Scholar 

  27. Bornstein SR, Ehrhart-Bornstein M, Güse-Behling H, Scherbaum WA . Structure and dynamics of adrenal mitochondria following stimulation with corticotropin releasing hormone Anat Rec 1992 234: 255–262

    Article  CAS  Google Scholar 

  28. Nussdorfer GG . Cytophysiology of the adrenal cortex Int Rev Cytol 1986 98: 1–405

    Article  CAS  Google Scholar 

  29. Bornstein SR, Ehrhart-Bornstein M, Scherbaum WA . Morphological and functional studies of the paracrine interaction between cortex and medulla in the adrenal gland Microsc Res Tech 1997 36: 520–533

    Article  CAS  Google Scholar 

  30. Bland ML, Jamieson CA, Akana SF, Bornstein SR, Eisenhofer G, Dallman MF, Ingraham HA . Haploinsufficiency of steroidogenic factor-1 in mice disrupts adrenal development leading to an impaired stress response Proc Natl Acad Sci USA 2000 97: 14488–14493

    Article  CAS  Google Scholar 

  31. Habib KE, Weld KP, Rice KC, Pushkas J, Champoux M, Listwak S et al. Oral administration of a corticotropin-releasing hormone receptor antagonist significantly attenuates behavioral, neuroendocrine, and autonomic responses to stress in primates Proc Natl Acad Sci USA 2000 97: 6079–6084

    Article  CAS  Google Scholar 

  32. Briscoe RJ, Cabrera CL, Baird TJ, Rice KC, Woods JH . Antalarmin blockade of corticotropin releasing hormone-induced hypertension in rats Brain Res 2000 881: 204–207

    Article  CAS  Google Scholar 

  33. Karalis KP, Kontopoulos E, Muglia LJ, Majzoub JA . Corticotropine-releasing hormone deficiency unmasks the proinflammatory effect of epinephrine Proc Natl Acad Sci USA 1999 96: 7093–7097

    Article  CAS  Google Scholar 

  34. Ebert SN, Ficklin MB, Her S, Siddall BJ, Bell RA, Ganguly K et al. Glucocorticoid-dependent action of neural crest factor AP-2: stimulation of phenylethanolamine N-methyltransferase gene expression J Neurochem 1998 70: 2286–2295

    Article  CAS  Google Scholar 

  35. Ebert SN, Wong DL . Differential activation of the rat phenylethanolamine N-methyltransferase gene by Sp1 and Egr-1 J Biol Chem 1995 270: 17299–17305

    Article  CAS  Google Scholar 

  36. Wong DL, Siddall BJ, Ebert SN, Bell RA, Her S . Phenylethanolamine N-methyltransferase gene expression: synergistic activation by Egr-1, AP-2 and the glucocorticoid receptor Brain Res Mol Brain Res 1998 61: 154–161

    Article  CAS  Google Scholar 

  37. Wong DL, Siddall B, Wang W . Hormonal control of rat adrenal phenylethanolamine N-methyltransferase. Enzyme activity, the final critical pathway Neuropsychopharmacology 1995 13: 223–234

    Article  CAS  Google Scholar 

  38. Viveros OH, Diliberto EJ Jr, Hong JH, Kizer JS, Unsworth CD, Kanamatsu T . The regulation of enkephalin levels in adrenomedullary cells and its relation to chromaffin vesicle biogenesis and functional plasticity Ann N Y Acad Sci 1987 493: 324–341

    Article  CAS  Google Scholar 

  39. O'Connor DT, Klein RL, Thureson-Klein AK, Barbosa JA . Chromogranin A: localization and stoichiometry in large dense core catecholamine storage vesicles from sympathetic nerve Brain Res 1991 567: 188–196

    Article  CAS  Google Scholar 

  40. Dillen L, Miserez B, Claeys M, Aunis D, De Potter W . Posttranslational processing of proenkephalins and chromogranins/secretogranins Neurochem Int 1993 22: 315–352

    Article  CAS  Google Scholar 

  41. Tran MA, Damase-Michel C, Tavernier G, Giraud P, Montastruc JL, Montastruc P . Co-release of neuropeptides and catecholamines by adrenal medulla Arch Mal Coeur Vaiss 1993 86: 1253–1256

    CAS  PubMed  Google Scholar 

  42. Bastiaensen E, De Block J, De Potter WP . Neuropeptide Y is localized together with enkephalins in adrenergic granules of bovine adrenal medulla Neuroscience 1988 25: 679–686

    Article  CAS  Google Scholar 

  43. Brimijoin S, Dagerlind A, Rao R, McKinzie S, Hammond P . Accumulation of enkephalin, proenkephalin mRNA, and neuropeptide Y in immunologically denervated rat adrenal glands: evidence for divergent peptide regulation J Neurochem 1995 64: 1281–1287

    Article  CAS  Google Scholar 

  44. Fischer-Colbrie R, Iacangelo A, Eiden LE . Neural and humoral factors separately regulate neuropeptide Y, enkephalin, and chromogranin A and B mRNA levels in rat adrenal medulla Proc Natl Acad Sci USA 1988 85: 3240–3244

    Article  CAS  Google Scholar 

  45. Stachowiak MK, Hong JS, Viveros OH . Coordinate and differential regulation of phenylethanolamine N-methyltransferase, tyrosine hydroxylase and proenkephalin mRNAs by neural and hormonal mechanisms cultured bovine adrenal medullary cells Brain Res 1990 510: 277–288

    Article  CAS  Google Scholar 

  46. Wan DC, Marley PD, Livett BG . Coordinate and differential regulation of proenkephalin A and PNMT mRNA expression in cultured bovine adrenal chromaffin cells: responses to cAMP elevation and phorbol esters Brain Res Mol Brain Res 1991 9: 135–142

    Article  CAS  Google Scholar 

  47. Eiden LE, Giraud P, Affolter HU, Herbert E, Hotchkiss AJ . Alternative modes of enkephalin biosynthesis regulation by reserpine and cyclic AMP in cultured chromaffin cells Proc Natl Acad Sci U S A 1994 81: 3949–3953

    Article  Google Scholar 

  48. Eiden LE, Giraud P, Dave JR, Hotchkiss AJ, Affolter HU . Nicotinic receptor stimulation activates enkephalin release and biosynthesis in adrenal chromaffin cells Nature 1984 312: 661–663

    Article  CAS  Google Scholar 

  49. Bornstein SR, Tian H, Haidan A, Böttner A, Hiroi N, Eisenhofer G et al. Deletion of tyrosine hydroxylase gene reveals functional interdependence of adrenocortical and chromaffin cell system in vivo Proc Natl Acad Sci U S A 2000 97: 14742–14747

    Article  CAS  Google Scholar 

  50. Böttner A, Haidan A, Eisenhofer G, Kristensen K, Castle AL, Scherbaum WA et al. Increased body fat mass and suppression of circulating leptin levels in response to hypersecretion of epinephrine in phenylethanolamine-N-methyltransferase (PNMT)-overexpressing mice Endocrinology 2000 141: 4239–4246

    Article  Google Scholar 

  51. Böttner A, Bornstein SR . Lessons learned from gene targeting and transgenesis for adrenal physiology and disease Rev Endo Metab Dis 2001 2: 275–287

    Article  Google Scholar 

  52. Quaife CJ, Hoyle GW, Froelick GJ, Findley SD, Baetge EE, Behringer RR et al. Visualization and ablation of phenylethanolamine N-methyltranferase producing cells in transgenic mice Transgenic Res 1994 3: 388–400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Yoshida-Hiroi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida-Hiroi, M., Bradbury, M., Eisenhofer, G. et al. Chromaffin cell function and structure is impaired in corticotropin-releasing hormone receptor type 1-null mice. Mol Psychiatry 7, 967–974 (2002). https://doi.org/10.1038/sj.mp.4001143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001143

Keywords

This article is cited by

Search

Quick links