Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Chronic lithium downregulates cyclooxygenase-2 activity and prostaglandin E2 concentration in rat brain

Abstract

Rats treated with lithium chloride for 6 weeks have been reported to demonstrate reduced turnover of arachidonic acid (AA) in brain phospholipids, and decreases in mRNA and protein levels, and enzyme activity, of AA-selective cytosolic phospholipase A2(cPLA2). We now report that chronic lithium administration to rats significantly reduced the brain protein level and enzyme activity of cyclooxygenase-2 (COX-2), without affecting COX-2 mRNA. Lithium also reduced the brain concentration of prostaglandin E2 (PGE2), a bioactive product of AA formed via the COX reaction. COX-1 and the Ca2+-independent iPLA2 (type VI) were unaffected by lithium. These and prior results indicate that lithium targets a part of the AA cascade that involves cPLA2 and COX-2. This effect may contribute to lithium's therapeutic action in bipolar disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Cade JFJ . Lithium salts in the treatment of psychotic excitement Med J Austral 1949; 36: 349–352

    Google Scholar 

  2. Manji HK, Potter WZ, Lenox RH . Signal transduction pathways. Molecular targets for lithium's action Arch Gen Psychiatry 1995; 52: 531–543

    Article  CAS  Google Scholar 

  3. Jope RS . Anti-bipolar therapy: mechanism of action of lithium Mol Psychiatry 1999; 4: 117–128

    Article  CAS  Google Scholar 

  4. Phiel CJ, Klein PS . Molecular targets of lithium action Annu Rev Pharmacol Toxicol 2001; 41: 789–813

    Article  CAS  Google Scholar 

  5. Chen RW, Chuang DM . Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity J Biol Chem 1999; 274: 6039–6042

    Article  CAS  Google Scholar 

  6. Axelrod J . Receptor-mediated activation of phospholipase A2 and arachidonic acid release in signal transduction Biochem Soc Trans 1990; 18: 503–507

    Article  CAS  Google Scholar 

  7. Reddy ST, Herschman HR . Prostaglandin synthase-1 and prostaglandin synthase-2 are coupled to distinct phospholipases for the generation of prostaglandin D2 in activated mast cells J Biol Chem 1997; 272: 3231–3237

    Article  CAS  Google Scholar 

  8. Fitzpatrick FA, Soberman R . Regulated formation of eicosanoids J Clin Invest 2001; 107: 1347–1351

    Article  CAS  Google Scholar 

  9. Horrobin DF, Manku MS . Possible role of prostaglandin E1 in the affective disorders and in alcoholism Br Med J 1980; 280: 1363–1366

    Article  CAS  Google Scholar 

  10. Karmazyn M, Manku MS, Horrobin DF . Changes of vascular reactivity induced by low vasopressin concentrations: interactions with cortisol and lithium and possible involvement of prostaglandins Endocrinology 1978; 102: 1230–1236

    Article  CAS  Google Scholar 

  11. Farooqui AA, Horrocks LA, Farooqui T . Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders Chem Phys Lipids 2000; 106: 1–29

    Article  CAS  Google Scholar 

  12. Brash AR . Arachidonic acid as a bioactive molecule J Clin Invest 2001; 107: 1339–1345

    Article  CAS  Google Scholar 

  13. Wolfe LS, Horrocks LA . Eicosanoids In: Siegel GJ, Agranoff BW, Albers RW, Molinoff PB (eds) Basic Neurochemistry, 5th edn Raven Press: New York 1994; pp 475–490

    Google Scholar 

  14. Chang MC, Grange E, Rabin O, Bell JM, Rapoport SI . Lithium decreases turnover of arachidonate in several phospholipids Neurosci Lett 1996; 220: 171–174

    Article  CAS  Google Scholar 

  15. Chang MC, Bell JM, Purdon AD, Chikhale EG, Grange E . Dynamics of docosahexaenoic acid metabolism in the central nervous system: lack of effect of chronic lithium treatment Neurochem Res 1999; 24: 399–406

    Article  CAS  Google Scholar 

  16. Chang MC, Jones CR . Chronic lithium treatment decreases brain phospholipase A2 activity Neurochem Res 1998; 23: 887–892

    Article  CAS  Google Scholar 

  17. Rintala J, Seemann R, Chandrasekaran K, Rosenberger TA, Chang L, Contreras MA et al. 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain Neuroreport 1999; 10: 3887–3890

    Article  CAS  Google Scholar 

  18. Herschman HR . Prostaglandin synthase 2 Biochim Biophys Acta 1996; 1299: 125–140

    Article  Google Scholar 

  19. Smith WL, Garavito DL, DeWitt DL . Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2 J Biol Chem 1996; 271: 33157–33160

    Article  CAS  Google Scholar 

  20. Kaufmann WE, Worley PF, Pegg J, Bremer M, Isakson P . COX-2, a synaptically induced enzyme, is expressed by excitatory neurons at postsynaptic sites in rat cerebral cortex Proc Natl Acad Sci USA 1996; 93: 2317–2321

    Article  CAS  Google Scholar 

  21. Niwa K, Araki E, Morham SG, Ross ME, Iadecola C . Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex J Neurosci 2000; 20: 763–770

    Article  CAS  Google Scholar 

  22. Yamamoto T, Nozaki-Taguchi N . Analysis of the effects of cyclooxygenase (COX)-1 and COX-2 in spinal nociceptive transmission using indomethacin, a non-selective COX inhibitor, and NS-398, a COX-2 selective inhibitor Brain Res 1996; 739: 104–110

    Article  CAS  Google Scholar 

  23. Frank E, Swartz HA, Kupfer DJ . Interpersonal and social rhythm therapy: managing the chaos of bipolar disorder Biol Psychiatry 2000; 48: 430–432

    Article  Google Scholar 

  24. Martinez FE, Harabor A, Amankwah EK, Hart DA, Belik J . Urethane suppresses rat lung inducible cyclooxygenase and nitric oxide synthase mRNA levels Inflamm Res 2000; 49: 727–731

    Article  CAS  Google Scholar 

  25. Feng L, Xia Y, Garcia GE, Hwang D, Wilson CB . Involvement of reactive oxygen intermediates in cyclooxygenase-2 expression induced by interleukin-1, tumor necrosis factor-alpha, and lipopolysaccharide J Clin Invest 1995; 95: 1669–1675

    Article  CAS  Google Scholar 

  26. Powell WS . Reversed-phase high-pressure liquid chromatography of arachidonic acid metabolites formed by cyclooxygenase and lipoxygenases Anal Biochem 1985; 148: 59–69

    Article  CAS  Google Scholar 

  27. Taniguchi Y, Yokoyama K, Inui K, Deguchi Y, Furukawa K, Noda K . Inhibition of brain cyclooxygenase-2 activity and the antipyretic action of nimesulide Eur J Pharmacol 1997; 330: 221–229

    Article  CAS  Google Scholar 

  28. Bosetti F, Seemann R, Bell JM, Zahorchak R, Friedman E, Rapoport SI et al. Analysis of gene expression with cDNA microarrays in rat brain after 7 and 42 days of oral lithium administration Brain Res Bull 2002; 57: 205–209

    Article  CAS  Google Scholar 

  29. Furth EE, Hurtubise V, Schott MA, Laposata M . The effect of endogenous essential and nonessential fatty acids on the uptake and subsequent agonist-induced release of arachidonate J Biol Chem 1989; 264: 18494–18501

    CAS  PubMed  Google Scholar 

  30. Morita L, Schindler M, Regier MK, Otto JC, Hori T, DeWitt DL et al. Different intracellular locations for prostaglandin endoperoxide H synthase-1 and -2 J Biol Chem 1995; 270: 10902–10908

    Article  CAS  Google Scholar 

  31. Tay A, Simon JS, Squire J, Hamel K, Jacob HJ, Skorecki K . Cytosolic phospholipase A2 gene in human and rat: chromosomal localization and polymorphic markers Genomics 1995; 26: 138–141

    Article  CAS  Google Scholar 

  32. Chang MC, Contreras MA, Rosenberger TA, Rintala JJ, Bell JM, Rapoport SI . Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: a possible common effect of mood stabilizers J Neurochem 2001; 77: 796–803

    Article  CAS  Google Scholar 

  33. Szupera Z, Mezei Z, Kis B, Gecse A, Vecsei L, Telegdy G . The effects of valproate on the arachidonic acid metabolism of rat brain microvessels and of platelets Eur J Pharmacol 2000; 387: 205–210

    Article  CAS  Google Scholar 

  34. Verburg KM, Maziasz TJ, Weiner E, Loose L, Geis GS, Isakson PC . COX-2 specific inhibitors: definition of a new therapeutic concept Am J Ther 2001; 8: 49–64

    Article  CAS  Google Scholar 

  35. Ketterer MW, Brymer J, Rhoads K, Kraft P, Lovallo WR . Is aspirin, as used for antithrombosis, an emotion-modulating agent? J Psychosom Res 1996; 40: 53–58

    Article  CAS  Google Scholar 

  36. Kujubu DA, Fletcher BS, Varnum BC, Lim RW, Herschman HR . TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue J Biol Chem 1991; 266: 12866–12872

    CAS  Google Scholar 

  37. Dixon DA, Kaplan CD, McIntyre TM, Zimmerman GA, Prescott SM . Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3′ untranslated region J Biol Chem 2000; 275: 11750–11757

    Article  CAS  Google Scholar 

  38. Hla T, Neilson K . Human cyclooxygenase-2 cDNA Proc Natl Acad Sci USA 1992; 89: 7384–7388

    Article  CAS  Google Scholar 

  39. Faour WH, He Y, He QW, de Ladurantaye M, Quintero M, Mancini A et al. Prostaglandin E2 regulates the level and stability of cyclooxygenase-2 mRNA through activation of p38 mitogen activated protein kinase in interleukin-1β-treated human synovial fibroblasts J Biol Chem 2001; 34: 31720–31731

    Article  Google Scholar 

  40. Horrobin DF, Mtabaji JP, Manku MS, Karmazyn M . Lithium as a regulator of hormone-stimulated prostaglandin synthesis In: Johnson FN, Johnson S (eds) Lithium in Medical Practice University Park Press: Baltimore MD 1978; pp 243–246

    Google Scholar 

  41. Dawson E, Gill M, Curtis D, Castle D, Hunt N, Murray R et al. Genetic association between alleles of pancreatic phospholipase A2 gene and bipolar affective disorder Psychiatr Genet 1995; 5: 177–180

    Article  CAS  Google Scholar 

  42. Jacobsen NJ, Franks EK, Owen MJ, Craddock NJ . Mutational analysis of phospholipase A2A: a positional candidate susceptibility gene for bipolar disorder Mol Psychiatry 1999; 4: 274–279

    Article  CAS  Google Scholar 

  43. Hayaishi O . Prostaglandin D2 and sleep—a molecular genetic approach J Sleep Res 1999; 8: 60–64

    Article  Google Scholar 

  44. Yoshida Y, Matsumura H, Nakajima T, Mandai M, Urakami T, Kuroda K et al. Prostaglandin E (EP) receptor subtypes and sleep: promotion by EP4 and inhibition by EP1/EP2 Neuroreport 2000; 11: 2127–2131

    Article  CAS  Google Scholar 

  45. Hayaishi O . Molecular mechanisms of sleep-wake regulation: a role of prostaglandin D2 Philos Trans R Soc Lond B Biol Sci 2000; 355: 275–280

    Article  CAS  Google Scholar 

  46. Matsumura H, Honda K, Choi WS, Inoue S, Sakai T, Hayaishi O . Evidence that brain prostaglandin E2 is involved in physiological sleep-wake regulation in rats Proc Natl Acad Sci USA 1989; 86: 5666–5669

    Article  CAS  Google Scholar 

  47. Horrobin DF, Lieb J . A biochemical basis for the actions of lithium on behaviour and on immunity: relapsing and remitting disorders of inflammation and immunity such as multiple sclerosis or recurrent herpes as manic-depression of the immune system Med Hypotheses 1981; 7: 891–905

    Article  CAS  Google Scholar 

  48. Stoll AL, Severus WE, Freeman MP, Rueter S, Zboyan HA, Diamond E et al. Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial Arch Gen Psychiatry 1999; 56: 407–412

    Article  CAS  Google Scholar 

  49. Noaghiul S, Hibbeln JR, Weissman MM . Cross-national comparisons of seafood consumption and rates of bipolar disorder Am J Psychiatry (in press)

  50. Corey EJ, Shih C, Cashman JR . Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis Proc Natl Acad Sci USA 1983; 80: 3581–3584

    Article  CAS  Google Scholar 

  51. Rubin D, Laposata M . Cellular interactions between n-6 and n-3 fatty acids: a mass analysis of fatty acid elongation/desaturation, distribution among complex lipids, and conversion to eicosanoids J Lipid Res 1992; 33: 1431–1440

    CAS  PubMed  Google Scholar 

  52. Seung Kim HF, Weeber EJ, Sweatt JD, Stoll AL, Marengell LB . Inhibitory effects of omega-3 fatty acids on protein kinase C activity in vitro Mol Psychiatry 2001; 6: 246–248

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor Harvey Herschman for his critical review of this manuscript and Jane Bell for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Bosetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosetti, F., Rintala, J., Seemann, R. et al. Chronic lithium downregulates cyclooxygenase-2 activity and prostaglandin E2 concentration in rat brain. Mol Psychiatry 7, 845–850 (2002). https://doi.org/10.1038/sj.mp.4001111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001111

Keywords

This article is cited by

Search

Quick links