Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Millennium Article
  • Published:

Neurobiology of the stress response early in life: evolution of a concept and the role of corticotropin releasing hormone

Abstract

Over the last few decades, concepts regarding the presence of hormonal and molecular responses to stress during the first postnatal weeks in the rat and the role of the neuropeptide corticotropin releasing hormone (CRH) in these processes, have been evolving. CRH has been shown to contribute critically to molecular and neuroendocrine responses to stress during development. In turn the expression of this neuropeptide in both hypothalamus and amygdala is differentially modulated by single and recurrent stress, and is determined also by the type of stress (eg, psychological or physiological). A likely transcriptional regulatory factor for modulating CRH gene expression, the cAMP responsive element binding protein CREB, is phosphorylated (activated) in the developing hypothalamus within seconds of stress onset, preceding the transcription of the CRH gene and initiating the activation of stress-induced cellular and neuroendocrine cascades. Finally, early life stress may permanently modify the hypothalamic pituitary adrenal axis and the response to further stressful stimuli, and recent data suggest that CRH may play an integral role in the mechanisms of these long-term changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Levine S . A further study of infantile handling and adult avoidance learning J Personality 1957 25: 70–80

    Google Scholar 

  2. Plotsky PM, Meaney MJ . Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats Mol Brain Res 1993 18: 195–200

    CAS  PubMed  Google Scholar 

  3. Heim C, Owens MJ, Plotsky PM, Nemeroff CB . Endocrine factors in the pathopysiology of mental disorders Psychopharmacol Bull 1997 33: 185–192

    CAS  PubMed  Google Scholar 

  4. Sánchez MM, Hearn EF, Do D, Rilling JK, Herndon JG . Differential rearing affects corpus callosum size and cognitive function of rhesus monkeys Brain Res 1998 812: 38–49

    PubMed  Google Scholar 

  5. Gold PW, Wong ML, Chrousos GP, Licinio J . Stress system abnormalities in melancholic and atypical depression: molecular, pathophysiological, and therapeutic implications Mol Psychiatry 1996 1: 257–264

    CAS  PubMed  Google Scholar 

  6. Levine S . The pituitary-adrenal system and the developing brain Prog Brain Res 1970 32: 79–85

    CAS  PubMed  Google Scholar 

  7. Schoenfeld NM, Leathem JH, Rabii J . Maturation of adrenal stress responsiveness in the rat Neuroendocrinology 1980 31: 101–105

    CAS  PubMed  Google Scholar 

  8. Yi SJ, Baram TZ . Corticotropin-releasing hormone mediates the response to cold stress in the neonatal rat without compensatory enhancement of the peptide's gene expression Endocrinology 1994 135: 2364–2368

    CAS  PubMed  Google Scholar 

  9. Muret L, Priou A, Oliver C, Grino M . Stimulation of adrenocorticotropin secretion by insulin-induced hypoglycemia in the developing rat involves arginine vasopressin but not corticotropin-releasing factor Endocrinology 1992 130: 2725–2732

    CAS  PubMed  Google Scholar 

  10. Vazquez DM . Stress and the developing limbic-hypothalamic-pituitary-adrenal axis Psychoneuroendocrinology 1998 23: 663–700

    CAS  PubMed  Google Scholar 

  11. Walker C-D, Scribner K, Cascio CS, Dallman MF . The pituitary-adrenocortical system of neonatal rats is responsive to stress throughout development in a time-dependent and stressor-specific fashion Endocrinology 1991 128: 1385–1395

    CAS  PubMed  Google Scholar 

  12. Dent GW, Smith MA, Levine S . Rapid induction of corticotropin-releasing hormone gene transcription in the paraventricular nucleus of the developing rat Endocrinology 2000 141: 1593–1598

    CAS  PubMed  Google Scholar 

  13. Walker CD, Perrin M, Vale W, Rivier C . Ontogeny of the stress response in the rat: role of the pituitary and the hypothalamus Endocrinology 1986 118: 1445–1451

    CAS  PubMed  Google Scholar 

  14. Baram TZ, Yi S, Avishai-Eliner S, Schultz L . Development neurobiology of the stress response: multilevel regulation of corticotropin-releasing hormone function Ann NY Acad Sci 1997 814: 252–265

    CAS  PubMed  Google Scholar 

  15. Vale W, Spiess J, Rivier C, Rivier J . Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin Science 1981 213: 1394–1397

    CAS  PubMed  Google Scholar 

  16. Levine S . The ontogeny of the hypothalamic-pituitary-adrenal axis. The influence of maternal factors Ann NY Acad Sci 1994 746: 275–288

    CAS  PubMed  Google Scholar 

  17. Oates M, Woodside B, Walker CD . Chronic leptin administration in developing rats reduces stress responsiveness partly through changes in maternal behavior Hormones Behav 2000 37: 366–376

    CAS  Google Scholar 

  18. Lightman SL, Young WS . Influence of steroids on the hypothalamic corticotropin-releasing factor and preproenkephalin mRNA responses to stress Proc Nat Acad Sci 1989 86: 4306–4310

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Young WS III, Mezey E, Siegel RE . Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin-releasing factor mRNA after adrenalectomy in rats Neurosci Lett 1986 70: 198–203

    PubMed  Google Scholar 

  20. Swanson LW, Simmons DM . Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat J Comp Neurol 1989 285: 413–435

    CAS  PubMed  Google Scholar 

  21. Yi SJ, Masters JN, Baram TZ . Effects of a specific glucocorticoid receptor antagonist on corticotropin releasing hormone gene expression in the paraventricular nucleus of the neonatal rat Dev Brain Res 1993 73: 253–259

    CAS  Google Scholar 

  22. Feldman S, Conforti N . Feedback effects of dexamethasone on adrenocortical responses of rats with fornix transection Hormone Res 1976 7: 56–59

    CAS  PubMed  Google Scholar 

  23. Herman JP, Schafer MK, Young EA, Thompson R, Douglass J, Akil H et al. Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis J Neurosci 1989 9: 3072–3082

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Avishai-Eliner S, Eghbal-Ahmadi M, Tabachnik E, Brunson KL, Baram TZ . Down-regulation of hypothalamic corticotropin releasing hormone-mRNA precedes early-life experience-induced changes in hippocampal glucocorticoid receptor-mRNA Endocrinology 2001 142: 89–97

    CAS  PubMed  Google Scholar 

  25. Herman JP, Cullinan WE . Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis Trends Neurosci 1997 20: 78–84

    Article  CAS  PubMed  Google Scholar 

  26. Hatalski CG, Guirguis C, Baram TZ . Corticotropin releasing factor mRNA expression in the hypothalamic paraventricular nucleus and the central nucleus of the amygdala is modulated by repeated acute stress in the immature rat J Neuroendocrinol 1998 10: 663–669

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hatalski CG, Brunson KL, Tantayanubutr B, Chen Y, Baram TZ . Neuronal activity and stress differentially regulate hippocampal and hypothalamic corticotropin releasing hormone expression in the immature rat Neuroscience 2000 101: 571–580

    CAS  PubMed  Google Scholar 

  28. Beaulieu S, Pelletier G, Vaudry H, Barden N . Influence of the central nucleus of the amygdala on the content of corticotropin-releasing factor in the median eminence Neuroendocrinology 1989 49: 255–261

    CAS  PubMed  Google Scholar 

  29. Honkaniemi J, Kononen J, Kainu T, Pyykonen I, Pelto-Huikko M . Induction of multiple immediate early genes in rat hypothalamic paraventricular nucleus after stress Mol Brain Res 1994 25: 234–241

    CAS  PubMed  Google Scholar 

  30. Tannahill LA, Sheward WJ, Robinson IC, Fink G . Corticotropin-releasing factor-41, vasopressin and oxytocin release into hypophysial portal blood in the rat: effects of electrical stimulation of the hypothalamus, amygdala and hippocampus J Endocrinol 1991 129: 99–107

    CAS  PubMed  Google Scholar 

  31. Koob GF, Bloom FE . Corticotropin-releasing factor and behavior Fed Proc 1985 44: 259–263

    CAS  PubMed  Google Scholar 

  32. Swanson LW, Sawchenko PE, Rivier J, Vale WW . Organization of ovine corticotropin releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study Neuroendocrinology 1983 36: 165–186

    CAS  PubMed  Google Scholar 

  33. De Souza EB, Insel TR, Perrin MH, Rivier J, Vale WW, Kuhar MJ . Corticotropin-releasing factor receptors are widely distributed within the rat CNS: an autoradiographic study J Neurosci 1985 5: 3189–3203

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gray TS, Bingaman EW . The amygdala: corticotropin-releasing factor, steroids, and stress Crit Rev Neurobiol 1996 10: 155–168

    CAS  PubMed  Google Scholar 

  35. Avishai-Eliner S, Yi SJ, Baram TZ . Developmental profile of messenger RNA for the corticotropin-releasing hormone receptor in the limbic system Dev Brain Res 1996 91: 159–163

    CAS  Google Scholar 

  36. Yan XX, Toth Z, Schultz L, Ribak CE, Baram TZ . Corticotropin releasing hormone (CRH)-containing neurons in the hippocampal formation: morphological and neurochemical characterization Hippocampus 1998 8: 231–243

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Eghbal-Ahmadi M, Hatalski CG, Lovenberg TW, Avishai-Eliner S, Chalmers DT, Baram TZ . The developmental profile of the corticotropin releasing hormone receptor (CRF2) in rat brain predicts distinct age-specific functions Dev Brain Res 1998 107: 81–90

    CAS  Google Scholar 

  38. Chen Y, Brunson K, Cariaga W, Baram TZ . Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 (CRF1)-like immunoreactivity in the mouse brain: light microscopy analysis using an antibody directed against the C-terminus J Comp Neurol 2000 420: 305–323

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen Y, Bender RA, Frotscher M, Baram TZ . Novel and transient populations of corticotropin-releasing hormone-expressing neurons in developing hippocampus suggest unique functional roles: a quantitative spatiotemporal analysis 2001 (under revision)

  40. Swiergel AH, Takahashi LK, Kalin NH . Attenuation of stress-induced behavior by antagonism of corticotropin-releasing factor receptors in the central amygdala in the rat Brain Res 1993 623: 229–234

    Google Scholar 

  41. Gray TS . Amygdaloid CRF pathways Ann NY Acad Sci 1993 697: 53–60

    CAS  PubMed  Google Scholar 

  42. Watts AG . Understanding the neural control of ingestive behaviors: helping to separate cause from effect with dehydration-associated anorexia Hormones and Behavior 2000 37: 261–283

    CAS  PubMed  Google Scholar 

  43. Fallon JH, Koziell DA, Moore RY . Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex J Comp Neurol 1978 180: 509–532

    CAS  PubMed  Google Scholar 

  44. Zardetto-Smith AM, Gray TS . Organization of peptidergic and catecholaminergic efferents from the nucleus of the solitary tract to the rat amygdala Brain Res Bull 1990 25: 875–887

    CAS  PubMed  Google Scholar 

  45. Howe PR . Blood pressure control by neurotransmitters in the medulla oblongata and spinal cord J Autonomic Nervous System 1985 12: 95–115

    CAS  Google Scholar 

  46. Eghbal-Ahmadi M, Avishai-Eliner S, Hatalski CG, Baram TZ . Differential regulation of the expression of corticotropin-releasing factor receptor type 2 (CRF2) in hypothalamus and amygdala of the immature rat by sensory input and food intake J Neurosci 1999 19: 3982–3991

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sawchenko PE, Imaki T, Potter E, Kovács K, Imaki J, Vale W . The functional neuroanatomy of corticotropin-releasing factor Ciba Found Sym 1993 172: 5–29

    CAS  Google Scholar 

  48. Swanson LW, Petrovich GD . What is the amygdala? Trends Neurosci 1998 21: 323–331

    CAS  PubMed  Google Scholar 

  49. Jia HG, Rao ZR, Shi JW . An indirect projection from the nucleus of the solitary tract to the central nucleus in the rat: a light and electron microscopic study Brain Res 1994 663: 181–190

    CAS  PubMed  Google Scholar 

  50. Bhatnagar S, Dallman MF . Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress Neurosci 1998 84: 1025–1039

    CAS  Google Scholar 

  51. Lovenberg TW, Chalmers DT, Liu C, De Souza EB . CRF2α and CRF2β receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues Endocrinology 1995 136: 4139–4142

    CAS  PubMed  Google Scholar 

  52. Richard D, Rivest R, Naimi N, Timofeeva E, Rivest S . Expression of corticotropin-releasing factor and its receptors in the brain of lean and obese Zucker rats Endocrinology 1996 137: 4786–4795

    CAS  PubMed  Google Scholar 

  53. Eghbal-Ahmadi M, Hatalski CG, Avishai-Eliner S, Baram TZ . Corticotropin releasing factor receptor type II (CRF2) messenger ribonucleic acid levels in the hypothalamic ventromedial nucleus of the infant rat are reduced by maternal deprivation Endocrinology 1997 138: 5048–5051

    CAS  PubMed  Google Scholar 

  54. Levine S . Influence of psychological variables on the activity of the hypothalamic-pituitary-adrenal axis Euro J Pharmacol 2000 405: 149–160

    CAS  Google Scholar 

  55. Ma X-M, Lightman SL, Aguilera G . Vasopressin and corticotropin-releasing hormone gene responses to novel stress in rats adapted to repeated restraint Endocrinology 1999 140: 3623–3632

    CAS  PubMed  Google Scholar 

  56. Herman JP, Adams D, Prewitt C . Regulatory changes in neuroendocrine stress—integrative circuitry produced by a variable stress paradigm Neuroendocrinology 1995 61: 180–190

    CAS  PubMed  Google Scholar 

  57. Makino S, Smith MA, Gold PW . Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels Endocrinology 1995 136: 3299–3309

    CAS  PubMed  Google Scholar 

  58. Harbuz MS, Rees RG, Eckland D, Jessop DS, Brewerton D, Lightman SL . Paradoxical responses of hypothalamic corticotropin-releasing factor (CRF) messenger ribonucleic acid (mRNA) and CRF-41 peptide and adenohypophysial proopiomelanocortin mRNA during chronic inflammatory stress Endocrinology 1992 130: 1394–1400

    CAS  PubMed  Google Scholar 

  59. Watts AG . The impact of physiological stimuli on the expression of corticotropin-releasing hormone (CRH) and other neuropeptide genes Front Neuroendocrinol 1996 17: 281–326

    CAS  PubMed  Google Scholar 

  60. Dallman MF, Akana SF, Scribner KA, Bradbury MJ, Walker CD, Strack AM et al. Stress, feedback and facilitation in the hypothalamo-pituitary-adrenal axis Neuroendocrinol 1992 4: 517–526

    CAS  Google Scholar 

  61. Walker CD, Sapolsky RM, Meaney MJ, Vale WW, Rivier CL . Increased pituitary sensitivity to glucocorticoid feedback during the stress nonresponsive period in the neonatal rat Endocrinology 1986 119: 1816–1821

    CAS  PubMed  Google Scholar 

  62. Akana SF, Dallman MF . Chronic cold in adrenalectomized, corticosterone (B)-treated rats: facilitated corticotropin responses to acute restraint emerge as B increases Endocrinology 1997 138: 3249–3258

    CAS  PubMed  Google Scholar 

  63. Walker C-D, Dallman MF . Neonatal facilitation of stress-induced adrenocorticotropin secretion by prior stress: evidence for increased central drive to the pituitary Endocrinology 1993 132: 1101–1107

    CAS  PubMed  Google Scholar 

  64. Dallman MF . Moments in time—the neonatal rat hypothalamo-pituitary-adrenal axis Endocrinology 2000 141: 1590–1592

    CAS  PubMed  Google Scholar 

  65. Dubé C, Brunson KL, Nehlig A, Baram TZ . Corticotropin releasing hormone activates specific neuronal circuits, as indicated by c-fos expression and glucose metabolism J Cereb Blood Flow Metab 2000 20: 1414–1424

    PubMed  Google Scholar 

  66. Kalin NH, Takahashi LK, Chen F-L . Restraint stress increases corticotropin-releasing hormone mRNA content in the amygdala and paraventricular nucleus Brain Res 1994 656: 182–186

    CAS  PubMed  Google Scholar 

  67. Makino S, Gold PW, Schulkin J . Corticosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nucleus of the hypothalamus Brain Res 1994 640: 105–112

    CAS  PubMed  Google Scholar 

  68. Merali Z, McIntosh J, Kent P, Michaud D, Anisman H . Aversive and appetitive events evoke the release of corticotropin-releasing hormone a bombesin-like peptide at the central nucleus of the amygdala J Neurosci 1998 18: 4758–4766

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Brunson KL, Khan N, Eghbal-Ahmadi M, Baram TZ . ACTH acts directly on amygdala neurons to down-regulate corticotropin releasing hormone gene expression Ann Neurol 2001 49: 304–312

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Brindle PK, Montminy MR . The CREB family of transcription activators Curr Opin Genet Dev 1992 2: 199–204

    CAS  PubMed  Google Scholar 

  71. Lee KA, Masson N . Transcriptional regulation by CREB and its relatives Biochim Biophys Acta 1993 117: 221–233

    Google Scholar 

  72. Seasholtz AF, Thompson RC, Douglass JO . Identification of a cyclic adenosine monophosphate-responsive element in the rat corticotropin-releasing hormone gene Mol Endocrinol 1988 2: 1311–1319

    CAS  PubMed  Google Scholar 

  73. Guardiola-Diaz HM, Boswell C, Seasholtz AF . The cAMP-responsive element in the corticotropin-releasing hormone gene mediates transcriptional regulation by depolarization J Biol Chem 1994 269: 14784–14791

    CAS  PubMed  Google Scholar 

  74. Itoi K, Horiba N, Tozawa F, Sakai Y, Abe K, Demura H et al. Major role of 3′,5′-cyclic adenosine monophosphate-dependent protein kinase A pathway in corticotropin-releasing factor gene expression in the rat hypothalamus in vivo Endocrinology 1996 137: 2389–2396

    CAS  PubMed  Google Scholar 

  75. Kovács KJ, Sawchenko PE . Regulation of stress-induced transcriptional changes in the hypothalamic neurosecretory neurons J Mol Neurosci 1996 7: 125–133

    PubMed  Google Scholar 

  76. Légrádi G, Holzer D, Kapcala LP, Lechan RM . Glucocorticoids inhibit stress-induced phosphorylation of CREB in corticotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus Neuroendocrinology 1997 66: 86–97

    PubMed  Google Scholar 

  77. Hatalski CG, Baram TZ . Stress-induced transcriptional regulation in the developing rat brain involves increased cyclic adenosine 3′,5′-monophosphate-regulatory element binding activity Mol Endocrinol 1997 11: 2016–2024

    CAS  PubMed  Google Scholar 

  78. Hatalski CG, Avishai-Eliner S, Eghbal-Ahmadi M, Baram TZ . Induction of corticotropin releasing factor heteronuclear messenger RNA by acute cold stress in the developing rat hypothalamus 79th Endocrine Soc Proc Abs 1997 79: 516

    Google Scholar 

  79. Baram TZ, Hatalski CG . Neuropeptide-mediated excitability: a key triggering mechanism for seizure generation in the developing brain Trends Neurosci 1998 21: 471–476

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Kovács KJ, Sawchenko PE . Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons J Neurosci 1996 16: 262–273

    PubMed  PubMed Central  Google Scholar 

  81. Stanton ME, Gutierrez YR, Levine S . Maternal deprivation potentiates pituitary-adrenal stress responses in infant rats Behav Neurosci 1988 102: 692–700

    CAS  PubMed  Google Scholar 

  82. Suchecki D, Rosenfeld P, Levine S . Maternal regulation of the hypothalamic-pituitary-adrenal axis in the infant rat: the roles of feeding and stroking Dev Brain Res 1993 75: 185–192

    CAS  Google Scholar 

  83. van Oers HJJ, de Kloet ER, Whelan T, Levine S . Maternal deprivation effect on the infant's neural stress markers is reversed by tactile stimulation and feeding but not by suppressing corticosterone J Neursosci 1998 18: 10171–10179

    CAS  Google Scholar 

  84. Avishai-Eliner S, Hatalski CG, Tabachnik E, Eghbal-Ahmadi M, Baram TZ . Differential regulation of glucocorticoid receptor messenger RNA by maternal deprivation in immature rat hypothalamus and limbic regions Dev Brain Res 1999 114: 265–268

    CAS  Google Scholar 

  85. Smith MA, Kim S-Y, van Oers HJJ, Levine S . Maternal deprivation and stress induce immediate early genes in the infant rat brain Endocrinology 1997 138: 4622–4628

    CAS  PubMed  Google Scholar 

  86. Avishai-Eliner S, Yi SJ, Newth CJ, Baram TZ . Effects of maternal and sibling deprivation on basal and stress-induced hypothalamic-pituitary-adrenal components in the infant rat Neurosci Lett 1995 192: 49–52

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sapolsky RM, Meaney MJ . Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period Brain Res 1986 396: 64–76

    CAS  PubMed  Google Scholar 

  88. Coplan JD, Andrews MW, Rosenblum LA, Owens MJ, Friedman S, Gorman JM et al. Persistent elevations of cerebrospinal fluid concentrations of corticotropin-releasing factor in adult nonhuman primates exposed to early-life stressors: implications for the pathophysiology of mood and anxiety disorders Proc Nat Acad Sci 1996 93: 1619–1623

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Brunson KL, Eghbal-Ahmadi M, Bender R, Chen Y, Baram TZ . Long-term, progressive hippocampal cell-loss and dysfunction induced by early-life administration of corticotropin releasing hormone reproduce the effects of early-life stress Proc Natl Acad Sci USA 2001 (in press)

  90. Nemeroff CB . The role of corticotropin-releasing factor in the pathogenesis of major depression Pharmacopsychiatry 1988 21: 76–82

    CAS  PubMed  Google Scholar 

  91. Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ, Swaab DF . Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients Neuroendocrinology 1994 60: 436–444

    CAS  PubMed  Google Scholar 

  92. Raadsheer FC, van Heerikhuize JJ, Lucassen PJ, Tilders FJ, Swaab DF . Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus patients with Alzheimer's disease and depression Am J Psychiatry 1995 152: 1372–1376

    CAS  PubMed  Google Scholar 

  93. Bremner JD, Licinio J, Darnell A, Krystal JH, Owens MJ, Southwick SM et al. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder Am J Psychiatry 1997 154: 624–629

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Trickett PK, McBride-Chang C . The developmental impact of different forms of child abuse and neglect Dev Rev 1995 15: 311–337

    Google Scholar 

  95. Pihoker C, Owens MJ, Kuhn CM, Schanberg SM, Nemeroff CB . Maternal separation in neonatal rats elicits activation of the hypothalamic-pituitary-adrenocortical axis: a putative role for corticotropin-releasing factor Psychoneuroendocrinology 1993 18: 485–493

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratory was supported by NIH grants NS28912 and NS39307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Z Baram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunson, K., Avishai-Eliner, S., Hatalski, C. et al. Neurobiology of the stress response early in life: evolution of a concept and the role of corticotropin releasing hormone. Mol Psychiatry 6, 647–656 (2001). https://doi.org/10.1038/sj.mp.4000942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000942

Keywords

This article is cited by

Search

Quick links