Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Polymorphism in SNAP29 gene promoter region associated with schizophrenia

A Corrigendum to this article was published on 29 August 2001

Abstract

Linkage studies indicate that chromosome 22q contains a locus, or loci, for schizophrenia (SZ) and bipolar disorder (BPD). Furthermore, the congenital disorder velo cardio facial syndrome (VCFS), which is usually caused by a 22q11 microdeletion, is associated with an increased prevalence of psychiatric disease, including SZ and BPD. One plausible candidate gene that maps to 22q11, in a region deleted in the most common form of VCFS, is SNAP29, a member of the SNAP-25 family of SNARE proteins. To search for possible functional mutations in SNAP29 that could be analyzed as candidates for 22q11-linked psychiatric problems, exons, intron–exon junctions and the promoter region were screened. No coding variants were found, although a silent mutation at codon 6 and three single nucleotide polymorphisms (SNPs) were identified in the 5′ untranslated and promoter regions. One SNP, an A→G transition 849 nucleotides upstream of the transcription start site, showed a moderately significant difference in the distribution of alleles and genotypes in patients with SZ compared with controls (allele frequency: χ2 = 5.57, 1 df, P = 0.018; genotype: χ2 = 9.49, 2 df, P = 0.009; odds ratio = 1.59, 95% Cl = 1.08–2.34). No significant difference was found in patients with BPD. Although the functional significance of this mutation is not known, the tetranucleotide core sequence of the ets and IK2 families of transcription factors is altered as a result of the SNP. These data suggest that a mutation in the SNAP29 gene promoter region, or a mutation in linkage disequilibrium with the promoter SNP, may be involved in the pathogenesis of chromosome 22-linked SZ.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE . A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion Cell 1993 75: 409–418

    Article  CAS  PubMed  Google Scholar 

  2. Poirier MA, Xiao W, Macosko JC, Chan C, Shin Y-K, Bennett MK . The Synaptic SNARE complex is a parallel four-stranded helical bundle Nature Struct Biol 1998 5: 765–769

    Article  CAS  PubMed  Google Scholar 

  3. Pfeffer SR . Transport-vesicle targetting: tethers before SNAREs Nature Cell Biol 1999 1: E17–E22

    Article  CAS  PubMed  Google Scholar 

  4. Davis AF, Bai J, Fasshauer D, Wolowick MJ, Lewis JL, Chapman ER . Kinetics of synaptotagmin responses to Ca+2 and assembly with the core SNARE complex onto membranes Neuron 1999 24: 363–376

    Article  CAS  PubMed  Google Scholar 

  5. Zhong H, Yokoyama CT, Scheuer T, Catterall WA . Reciprocal regulation of P/Q-type Ca+2 channels by SNAP-25, syntaxin and synaptotagmin Nature Neurosci 1999 2: 939–941

    Article  CAS  PubMed  Google Scholar 

  6. Goodwin F, Bunney W . Depressions following reserpine: a reevaluation Semin Psychiatry 1971 3: 435–448

    CAS  PubMed  Google Scholar 

  7. Berman RM, Narasimhan M, Miller HL, Anand A, Cappiello A, Oren DA et al. Transient depressive relapse induced by catecholamine depletion Arch Gen Psychiatry 1999 56: 395–403

    Article  CAS  PubMed  Google Scholar 

  8. Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A . Amphetamine redistributes dopamine from synaptic vesicles to cytosol and promotes reverse transport J Neurosci 1995 15: 4102–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raber J, Mehta PP, Kreifeldt M, Parsons LH, Weiss F, Bloom FE et al. Coloboma hyperactive mutant mice exhibit regional and transmitter-specific deficits in neurotransmission J Neurochem 1997 68: 176–185

    Article  CAS  PubMed  Google Scholar 

  10. Hess EJ, Rogan PK, Domoto M, Tinker DE, Ladda RL, Ramer JC . Absence of linkage of apparently single gene mediated ADHD with the human syntenic region of the mouse mutant coloboma Am J Med Genet 1995 60: 573–579

    Article  CAS  PubMed  Google Scholar 

  11. Hess EJ, Collins KA, Wilson MC . Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation J Neurosci 1996 16: 3104–3111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karson CN, Mrak RE, Schluterman KO, Sturner WQ, Sheng JG, Griffin WS . Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for hypofrontality Mol Psychiatry 1999 4: 39–45

    Article  CAS  PubMed  Google Scholar 

  13. Young CE, Arima K, Xie J, Hu L, Beach TG, Falkai P et al. SNAP-25 deficit and hippocampal connectivity in schizophrenia Cereb Cortex 1998 8: 261–268

    Article  CAS  PubMed  Google Scholar 

  14. Vawter MP, Howard AL, Hyde TM, Kleinman JE, Freed WJ . Alterations of hippocampal secreted N-CAM in bipolar disorder and synaptophysin in schizophrenia Mol Psychiatry 1999 4: 467–475

    Article  CAS  PubMed  Google Scholar 

  15. Davidsson P, Gottfries J, Bogdanovic N, Ekman R, Karlsson I, Gottfries CG et al. The synaptic vesicle specific proteins rab3a and synaptophysin are reduced in thalamus and related cortical brain regions in schizophrenic brains Schizophr Res 1999 40: 23–29

    Article  CAS  PubMed  Google Scholar 

  16. Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ . Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness Neuroscience 1999 91: 1247–1255

    Article  CAS  PubMed  Google Scholar 

  17. Pulver AE, Karayiorgou M, Wolyniec PS, Lasseter VK, Kasch L, Nestadt G et al. Sequential strategy to identify a susceptibility gene for schizophrenia: report of potential linkage on chromosome 22q12–q13.1: part 1 Am J Med Genet 1994 54: 36–43

    Article  CAS  PubMed  Google Scholar 

  18. Coon H, Holik J, Hoff M, Reimherr F, Wender P, Myles-Worsley M et al. Analysis of chromosome 22 markers in nine schizophrenia pedigrees Am J Med Genet 1994 54: 72–79

    Article  CAS  PubMed  Google Scholar 

  19. Moises HW, Yang L, Li T, Havsteen B, Fimmers R, Baur MP et al. Potential linkage disequilibrium between schizophrenia and locus D22S278 on the long arm of chromosome 22 Am J Med Genet 1995 60: 465–467

    Article  CAS  PubMed  Google Scholar 

  20. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11 Proc Natl Acad Sci 1995 92: 7612–7616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao Q, Martinez M, Zhang J, Sanders AR, Bander JA, Cravchik A et al. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees Genomics 1997 43: 1–8

    Article  CAS  PubMed  Google Scholar 

  22. Detera-Wadleigh SD, Badner JA, Yoshikawa T, Sanders AR, Goldin LR, Turner G et al. Initial genome screen for bipolar disorder in the NIMH Genetics Initiative Pedigrees: chromosomes 4, 7, 9, 18, 19, 20, and 21q Am J Med Genet (Neuropsych Genet) 1997 74: 254–262

    Article  CAS  Google Scholar 

  23. Kao HT, Porton B, Czernik AJ, Feng J, Yiu G, Haring M et al. A third member of the synapsin gene family Proc Natl Acad Sci 1998 95: 4667–4672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang H, Frelin L, Pevsner J . Human syntaxin 7: a pep 12p/Vps6p homologue implicated in vesicle trafficking to lysosomes Gene 1997 199: 39–48

    Article  CAS  PubMed  Google Scholar 

  25. Dunham I, Shimiau N, Roe BA, Chissoe S et al. The DNA sequence of human chromosome 22 Nature 1999 402: 489–495

    Article  CAS  PubMed  Google Scholar 

  26. Martinez M, Goldin LR, Cao Q, Zhang J, Sanders AR, Nancarrow DJ et al. Follow-up study on a susceptibility locus for schizophrenia on chromosome 6q Am J Med Genet 1999 88: 337–343

    Article  CAS  PubMed  Google Scholar 

  27. Numberger JI, Foroud T . Chromosome 6 workshop report Am J Med Genet 1999 88: 233–238

    Article  Google Scholar 

  28. Wei J, Hemmings GP . Searching for a locus for schizophrenia within chromosome Xp11 Am J Med Genet (Neuropsychiatr Genet) 2000 96: 4–7

    Article  CAS  Google Scholar 

  29. Smyth C, Kalsi G, Curtis D, Brynjolfsson J, O'Neill J, Rifkin L et al. Two-locus admixture linkage analysis of bipolar and unipolar affective disorder supports the presence of susceptibility loci on chromosomes 11p15 and 21q22 Genomics 1997 39: 271–278

    Article  CAS  PubMed  Google Scholar 

  30. Straub RE, Lehner T, Luo Y, Loth JE, Shao W, Sharpe L et al. A possible vulnerability locus for BP affective disorder on chromosome 21 Nature Genet 1994 8: 291–296

    Article  CAS  PubMed  Google Scholar 

  31. Curtis D . Chromosome 21 workshop Am J Med Genet 1999 88: 272–275

    Article  CAS  PubMed  Google Scholar 

  32. Saito T, Parsia S, Papolos DF, Lachman HM . Analysis of the pseudoautosomal x-linked gene sybl1 in bipolar affective disorder: description of a new candidates allele for psychiatric disorders Am J Med Genet (Neuropsych Genet) 2000 96: 317–323

    Article  CAS  Google Scholar 

  33. Ohtusuki T, Ichiki R, Toru M, Arinami T . Mutational analysis of the synapsin III gene on chromosome 22q12–13 in schizophrenia Psychiatry Res 2000 94: 1–7

    Article  Google Scholar 

  34. Steegmeier M, Yang B, Yoo JS, Huang B, Shen M, Yu S et al. Three novel members of the syntaxin/SNAP-25 family J Biol Chem 1998 273: 34171–34179

    Article  Google Scholar 

  35. Shprintzen RJ, Goldberg RB, Lewin ML, Sidoti EJ, Berkman MD, Argamaso RV et al. A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities: velo-cardio-facial syndrome Cleft Palate J 1978 15: 56–62

    CAS  PubMed  Google Scholar 

  36. Scambler P, Kelly D, Lindsay E, Williamson R, Goldberg R, Shprintzen R et al. Velo cardio facial syndrome associated with chromosome 22q11 deletions encompassing the DiGeorge locus Lancet 1992 339: 1138–1139

    Article  CAS  PubMed  Google Scholar 

  37. Morrow B, Goldberg R, Carlson C, Gupta RD, Sirotkin H, Collins J et al. Molecular definition of the 22q11 deletions in velo-cardio facial syndrome Am J Hum Genet 1995 56: 1391–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shprintzen RJ, Goldberg R, Golding-Kushner KJ, Marion RW . Late-onset psychosis in the velo-cardio-facial syndrome Am J Med Genet 1992 42: 141–142

    Article  CAS  PubMed  Google Scholar 

  39. Papolos DF, Faedda GL, Veit S, Goldberg R, Morrow B, Kucherlapati R et al. Bipolar spectrum disorders in patients diagnosed with velo-cardio-facial syndrome: does a hemizygous deletion of chromosome 22q11 result in bipolar affective disorder Am J Psychiatry 1996 153: 1541–1544

    Article  CAS  PubMed  Google Scholar 

  40. Murphy KC, Jones LA, Owen MJ . High rates of schizophrenia in adults with velocardio-facial syndrome Arch Gen Psychiatry 1999 56: 940–945

    Article  CAS  PubMed  Google Scholar 

  41. Bassett AS, Chow EWC . 22q11 deletion syndrome: a genetic subtype of schizophrenia Biol Psychiatry 1999 46: 882–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lachman HM, Kelsoe JR, Remick JA, Sadovnick D, Rapaport MH, Lin M et al. Linkage studies support a possible locus for bipolar disorder near the velo-cardio-facial syndrome region on chromosome 22 Am J Med Genet (Neuropsych Genet) 1997 74: 121–128

    Article  CAS  Google Scholar 

  43. Edenberg HJ, Fouroud T, Connealy PM, Sorbel JJ, Carr K, Crose C et al. Initial genome screen for bipolar disorder in the NIMH Genetics Initiative Pedigrees: chromosomes 3, 5, 15, 16, 17, and 22 Am J Med Genet (Neuropsych Genet) 1997 74: 238–246

    Article  CAS  Google Scholar 

  44. Kelsoe JR, Loetsher E, Spence MA, Foquet M, Sadovnick AD, Remick RA et al. A genome survey of bipolar disorder indicates a susceptibility locus on chromosome 22 (Abstract) Am J Med Genet 1999 81: 461

    Google Scholar 

  45. Myles-Worsley M, Coon H, McDowell J, Brenner C, Hoff M, Lind B et al. Linkage of a composite inhibitory phenotype to a chromosome 22q locus in eight Utah families Am J Med Genet (Neuropsych Genet) 1999 88: 544–550

    Article  CAS  Google Scholar 

  46. Li T, Ball D, Zhao J, Murray RM, Iu X, Sham PC et al. Family-based linkage disequilibrium mapping using SNP marker haplotypes: application to a potential locus for schizophrenia at chromosome 22q11 Mol Psychiatry 2000 5: 77–84

    Article  CAS  PubMed  Google Scholar 

  47. Berrittini WH . Susceptibility loci for bipolar disorder: overlap with inherited vulnerability to schizophrenia Biol Psychiatry 2000 47: 245–251

    Article  Google Scholar 

  48. Su Q, Mochida S, Sheng Z-H . SNAP-29, a syntaxin 1A-binding protein implicated in synaptic transmission. Presented at Society for Neuroscience meeting, Oct 23–28, 1999 abstract number 692.7

  49. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T . Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms Proc Natl Acad Sci 1989 86: 2766–2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Quandt K, Frech K, Karas H, Wingender E, Werner T . Matlnd and MatInspector: new, fast and versatile tools for detection of consensus matches in nucleotide sequence data Nucl Acids Res 1995 23: 4878–4884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Virbasius JV, Virbasius CA, Scarpulla RC . Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters Genes Dev 1993 7: 380–392

    Article  CAS  PubMed  Google Scholar 

  52. Croager EJ, Abraham LJ . Characterization of the human CD30gand gene structure Biochim Biophys Acta 1997 1353: 231–235

    Article  CAS  PubMed  Google Scholar 

  53. Georgopoulos K, Moore DD, Derfler B . Ikaros an early T cell restricted transcription factor: a putative mediator for T cell commitment Science 1992 258: 808–812

    Article  CAS  PubMed  Google Scholar 

  54. Molnar A, Georgopoulos K . The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins Mol Cell Biol 1994 14: 8292–8303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Carlson C, Sirotkin H, Pandita R, Goldberg R, McKie J, Wadey R et al. Molecular definition of 22q11 deletions in 151 velocardio-facial syndrome patients Am J Hum Genet 1997 61: 620–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lachman HM, Morrow B, Shprintzen R, Veit S, Parsia S, Faedda G et al. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo cardio-facial syndrome Am J Med Genet (Neuropsych Genet) 1997 67: 468–472

    Article  Google Scholar 

  57. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM . Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders Pharmacogenetics 1996 6: 243–250

    Article  CAS  PubMed  Google Scholar 

  58. Papolos DF, Veit S, Faedda GL, Saito T, Lachman HM . Ultra-ultra rapid cycling bipolar disorder is associated with the low activity catecholamine-O-methyltransferase allele Mol Psychiatry 1998 3: 342–345

    Article  Google Scholar 

  59. Lachman HM, Nolan K, Mohr P, Saito T, Volavka J . Association between COMT genotype and violence in schizophrenia and schizoaffective disorder Am J Psychiatry 1998 155: 835–837

    CAS  PubMed  Google Scholar 

  60. Strous R, Bark N, Volavka J, Parsia SS, Lachman HM . Association of COMT codon 158 polymorphism with aggressive and antisocial behavior in schizophrenia Psychiatry Res 1997 69: 71–77

    Article  CAS  PubMed  Google Scholar 

  61. Kirov G, Murphy KC, Arranz MJ, Jones I, McCandles F, Kunugi H et al. Low activity allele of catechol-O-methyltransferase gene associated with rapid cycling bipolar disorder Mol Psychiatry 1998 3: 346–349

    Article  Google Scholar 

  62. Kotler M, Barak P, Cohen H, Averbuch IE, Grinshpoon A, Gritsenko I et al. Homicidal behavior in schizophrenia associated with a genetic polymorphism determining low catechol O-methyltransferase (COMT) activity Am J Med Genet (Neuropsychiatr Genet) 1999 88: 628–633

    Article  CAS  Google Scholar 

  63. Lachman HM, Kelsoe J, Moreno L, Katz S, Papolos DF . No evidence for linkage of COMT polymorphism in bipolar disorder Psychiatric Genet 1997 7: 13–17

    Article  CAS  Google Scholar 

  64. Gutierrez B, Bertranpetit J, Guillamat R, Valles V, Arranz MJ, Kerwin R et al. Association analysis of the catechol-O-methyltransferase gene and bipolar affective disorder Am J Psychiatry 1997 154: 113–115

    Article  CAS  PubMed  Google Scholar 

  65. Kunugi H, Vallada HP, Hoda F, Kirov G, Gill M, Aitchison KJ et al. No evidence for an association of affective disorders with high- or low-activity allele of catechol-o-methyltransferase gene Biol Psychiatry 1997 42: 282–285

    Article  CAS  PubMed  Google Scholar 

  66. Strous R, Bark N, Woemer, Parsia SS, Lachman HM . Lack of association of COMT codon 158 polymorphism in schizophrenia Biol Psychiatry 1997 41: 493–495

    Article  CAS  PubMed  Google Scholar 

  67. Gogos JA, Santha M, Takacs Z, Beck KD, Luine V, Lucas LR et al. The gene encoding proline dehydrogenase modulates sensorimotor gating in mice Nat Genet 1999 21: 434–439

    Article  CAS  PubMed  Google Scholar 

  68. Doody GA, Johnstone EC, Sanderson TL, Owens DG, Muir WJ . ‘Pfropfschizophrenie’ revisited. Schizophrenia in people with mild learning disability Br J Psychiatry 1998 173: 145–153

    Article  CAS  PubMed  Google Scholar 

  69. Sanderson TL, Best JJ, Doody GA, Owens DG, Johnstone EC . Neuroanatomy of comorbid schizophrenia and learning disability: a controlled study Lancet 1999 354: 1867–1871

    Article  CAS  PubMed  Google Scholar 

  70. Nielsen DM, Ehm MG, Weir BS . Detecting marker-disease association by testing for Hardy–Weinberg disequilibrium at a marker locus Am J Med Genet 1998 63: 1531–1540

    CAS  Google Scholar 

  71. Maroulakou IG, Papas TS, Green JE . Differential expression of ets1 and ets2 protooncogene during murine embryogenesis Oncogene 1994 9: 1551–1565

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank Drs Rael Strous, Margaret Woemer, Gianni Feadda, Sabine Veit, Jan Volavka and Karen Nolan for blood samples from schizophrenia subjects. Some DNA samples were obtained from the Coriell Institute in conjunction with The National Institutes of Mental Health Bipolar Genetics Initiative, a multi-site study performed by four independent research teams in collaboration with extramural staff from the National Institute of Mental Health (NIMH). The four Principal Investigators and Co-Investigators from the four sites are: Indiana University, Indianapolis, IN, U01 MH46282, John Numberger, MD, PhD, Marvin Miller, MD, and Elizabeth Bowman, MD; Washington University, St Louis, MO, U01 MH46280, Theodore Reich, MD, Allison Goate, PhD, and John Rice, PhD; Johns Hopkins University, Baltimore MD, U01 MH46274, J Raymond DePaulo, Jr, MD, Sylvia Simpson, MD, MPH, and Colin Stine, PhD: NIMH Intramural Research Program, Clinical Neurogenetics Branch, Bethesda, MD, Elliot Gershon, MD, Diane Kazuba, BA, and Elizabeth Maxwell.

TS is supported by the American Psychiatric Association, Program for Minority Research Training in Psychiatry, and by a Young Investigator Award from NARSAD. HML is a recipient of a NARSAD Independent Investigator Award. DFP is a recipient of a NARSAD Independent Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H M Lachman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, T., Guan, F., Papolos, D. et al. Polymorphism in SNAP29 gene promoter region associated with schizophrenia. Mol Psychiatry 6, 193–201 (2001). https://doi.org/10.1038/sj.mp.4000825

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000825

Keywords

This article is cited by

Search

Quick links