Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Millennium Article
  • Published:

Neuroplasticity and cellular resilience in mood disorders

Abstract

Although mood disorders have traditionally been regarded as good prognosis diseases, a growing body of data suggests that the long-term outcome for many patients is often much less favorable than previously thought. Recent morphometric studies have been investigating potential structural brain changes in mood disorders, and there is now evidence from a variety of sources demonstrating significant reductions in regional CNS volume, as well as regional reductions in the numbers and/or sizes of glia and neurons. Furthermore, results from recent clinical and preclinical studies investigating the molecular and cellular targets of mood stabilizers and antidepressants suggest that a reconceptualization about the pathophysiology and optimal long-term treatment of recurrent mood disorders may be warranted. It is proposed that impairments of neuroplasticity and cellular resilience may underlie the pathophysiology of mood disorders, and further that optimal long-term treatment for these severe illnesses may only be achieved by the early and aggressive use of agents with neurotrophic/ neuroprotective effects. It is noteworthy that lithium, valproate and antidepressants indirectly regulate a number of factors involved in cell survival pathways including CREB, BDNF, bcl-2 and MAP kinases, and may thus bring about some of their delayed long-term beneficial effects via underappreciated neurotrophic effects. The development of novel treatments which more directly target molecules involved in critical CNS cell survival and cell death pathways have the potential to enhance neuroplasticity and cellular resilience, and thereby modulate the long-term course and trajectory of these devastating illnesses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Goldberg JF, Harrow M . Bipolar Disorders: Clinical Course and Outcome American Psychiatric Press: Washington, DC 1999

    Google Scholar 

  2. Goodwin FK, Jamison KR . Manic-depressive Illness Oxford University Press: New York 1990

    Google Scholar 

  3. Musselman DL, Evans DL, Nemeroff CB . The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment Arch Gen Psychiatry 1998; 55: 580–592

    CAS  PubMed  Google Scholar 

  4. Licinio J, Wong ML . The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection Mol Psychiatry 1999; 4: 317–327

    CAS  PubMed  Google Scholar 

  5. Schulz R, Beach SR, Ives DG, Martire LM, Ariyo AA, Kop WJ . Association between depression and mortality in older adults: the Cardiovascular Health Study Arch Intern Med 2000; 160: 1761–1768

    CAS  PubMed  Google Scholar 

  6. Murray CJ, Lopez AD . Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study Lancet 1997; 349: 1436–1442

    CAS  PubMed  Google Scholar 

  7. Murray CJ, Lopez AD . Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study Lancet 1997; 349: 1498–1504

    CAS  PubMed  Google Scholar 

  8. Mesulam MM . Neuroplasticity failure in Alzheimer's disease: bridging the gap between plaques and tangles Neuron 1999; 24: 521–529

    CAS  PubMed  Google Scholar 

  9. Kandel ER . From metapsychology to molecular biology: explorations into the nature of anxiety Am J Psychiatry 1983; 140: 1277–1293

    CAS  PubMed  Google Scholar 

  10. Duman RS, Heninger GR, Nestler EJ . A molecular and cellular theory of depression Arch Gen Psychiatry 1997; 54: 597–606

    CAS  PubMed  Google Scholar 

  11. Manji HK, Moore GJ, Chen G . Clinical and preclinical evidence for the neurotrophic and effects of mood-stabilizing agents: implications for the pathophysiology and treatment of manic-depressive illness Biol Psychiatry 2000; (in press

  12. Elkis H, Friedman L, Wise A, Meltzer HY . Meta-analyses of studies of ventricular enlargement and cortical sulcal prominence in mood disorders. Comparisons with controls or patients with schizophrenia Arch Gen Psychiatry 1995; 52: 735–746

    CAS  PubMed  Google Scholar 

  13. Soares JC, Mann JJ . The anatomy of mood disorders: review of structural neuroimaging studies Biol Psychiatry 1997; 41: 86–106

    CAS  PubMed  Google Scholar 

  14. Drevets WC, Price JL, Simpson JR et al. Subgenual prefrontal cortex abnormalities in mood disorders Nature 1997; 386: 824–827

    CAS  PubMed  Google Scholar 

  15. Drevets WC, Gadde KM, Krishnan KRR . Neuroimaging studies of mood disorders, In: DS Charney, EJ Nestler, BS Bunney (eds) Neurobiology of Mental Illness Oxford University Press: New York 1999; pp 394–418

    Google Scholar 

  16. Sheline YI, Wany P, Gado MH, Csernansky JG, Vannier MW . Hippocampal atrophy in recurrent major depression Proc Natl Acad Sci USA 1996; 93: 3908–3913

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sheline Y, Sang M, Mintum M, Gado M . Depression duration but not age predicts hippocampal volume loss in medical healthy women with recurrent major depression J Neurosci 1999; 19: 5034

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Steffens DC, Krishnan KR . Structural neuroimaging and mood disorders: recent findings, implications for classification, and future directions Biol Psychiatry 1998; 43: 705–712

    CAS  PubMed  Google Scholar 

  19. Hirayasu Y, Shenton ME, Salisbury DF, Kwon JS, Wible CG, Fischer IA et al. Subgenual cingulate cortex volume in first-episode psychosis Am J Psychiatry 1999; 156: 1091–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS . Hippocampal volume reduction in major depression Am J Psychiatry 2000; 157: 115–118

    CAS  PubMed  Google Scholar 

  21. Krishnan KR, Doraiswamy PM, Figiel GS, Husain MM, Shah SA, Na C et al. Hippocampal abnormalities in depression J Neuropsychiatry Clin Neurosci 1991; 3: 387–391

    CAS  PubMed  Google Scholar 

  22. Shah PJ, Ebmeier KP, Glabus MF, Goodwin GM . Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression Br J Psychiatry 1998; 172: 527–532

    CAS  PubMed  Google Scholar 

  23. Brown ES, Rush AJ, McEwen BS . Hippocampal remodeling and damage by corticosteroids: implications for mood disorders Neuropsychopharmacology 1999; 21: 474–484

    CAS  PubMed  Google Scholar 

  24. Sapolsky RM . The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death Biol Psychiatry 2000; (in press

  25. McEwen BS . Stress and hippocampal plasticity Annu Rev Neurosci 1999; 22: 105–122

    CAS  PubMed  Google Scholar 

  26. Baslow MH . Functions of N-acetyl-L-aspartate and N-acetyl-L-aspartylglutamate in the vertebrate brain: role in glial cell-specific signaling J Neurochem 2000; 75: 453–459

    CAS  PubMed  Google Scholar 

  27. Tsai G, Coyle JT . N-acetylaspartate in neuropsychiatric disorders Prog Neurobiol 1995; 46: 531–540

    CAS  PubMed  Google Scholar 

  28. Bates TE, Strangward M, Keelan J, Davey GP, Munro PM, Clark JB . Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo Neuroreport 1996; 7: 1397–1400

    CAS  PubMed  Google Scholar 

  29. Bertolino A, Frye M, Callicott JH, Repella JD, Rakow RL, Post RM et al. Neuronal pathology in the hippocampal area of patients with bipolar disorder: A H-1-MRSI study Biol Psychiatry 1999; 45: 135S

    Google Scholar 

  30. Frye MA, Bertolino A, Callicott JH, Repella JD, Rakow RL, Post RM, Weiberger DR . A 1H-MRSI hippocampal study in bipolar patients with a history of alcohol abuse Biol Psychiatry 2000; 47: 260S

    Google Scholar 

  31. Winsberg ME, Sachs N, Tate DL, Adalsteinsson E, Spielman D, Ketter TA . Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorders Biol Psychiatry 2000; 47: 475–481

    CAS  PubMed  Google Scholar 

  32. Kato T, Takahashi S, Shioiri T, Murashita J, Hamakawa H, Inubushi T . Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy J Affect Disord 1994; 31: 125–133

    CAS  PubMed  Google Scholar 

  33. Kato T, Shioiri T, Murashita J, Hamakawa H, Inubushi T, Takahashi S . Phosphorous-31 magnetic resonance spectroscopy and ventricular enlargement in bipolar disorder Psychiatry Res: Neuroimaging 1994; 55: 41–50

    CAS  PubMed  Google Scholar 

  34. Kato T, Takahashi S, Shioiri T, Inubushi T . Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy J Affect Disord 1992; 26: 223–230

    CAS  PubMed  Google Scholar 

  35. Kato T, Shioiri T, Murashita J, Hamakawa H, Takashashi Y, Inubushi T et al. Lateralized abnormality of high energy phosphate metabolism in the frontal lobes of patients with bipolar disorder detected by phase-encoded 31P-MRS Psychol Med 1995; 25: 557–566

    CAS  PubMed  Google Scholar 

  36. Deicken RF, Fein G, Weiner MW . Abnormal frontal lobe phosphorus metabolism in bipolar disorder Am J Psychiatry 1995; 152: 915–918

    CAS  PubMed  Google Scholar 

  37. Deicken RF, Weiner MW, Fein G . Decreased temporal lobe phosphomonoesters in bipolar disorder J Affect Disord 1995; 33: 195–199

    CAS  PubMed  Google Scholar 

  38. Volz HP, Rzanny R, Riehemann S, May S, Hegewald H, Preussler B et al. 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients Eur Arch Psychiatry Clin Neurosci 1998; 248: 289–295

    CAS  PubMed  Google Scholar 

  39. Kato T, Shioiri T, Takashashi S, Inubushi T . Measurement of phosphoinositide metabolism in bipolar patients using in vivo 31P-MRS J Affect Disord 1991; 22: 185–190

    CAS  PubMed  Google Scholar 

  40. Keshavan MS, Pettegrew JW, Panchalingan K, Kaplan D, Brar J, Campbell K . In vivo 31P-MRS of the frontal lobe in neuroleptic-näive first-episode psychosis: preliminary observations Schizophrenia Res 1989; 2: 123

    Google Scholar 

  41. Kato T, Takahashi S, Shioiri T, Inubushi T . Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy J Affect Disord 1993; 27: 53–60

    CAS  PubMed  Google Scholar 

  42. Murashita J, Kato T, Shioiri T, Inubushi T, Kato N . Altered brain energy metabolism in lithium-resistant bipolar disorder detected by photic stimulated 31P-MR spectroscopy Psychol Med 2000; 30: 107–115

    CAS  PubMed  Google Scholar 

  43. Baumann B, Danos P, Krell D et al. Reduced volume of limbic system-affiliated basalganglia in mood disorders: preliminary data from a postmortem study J Neuropsych Clin Neurosci 1999; 11: 71–78

    CAS  Google Scholar 

  44. Baumann B, Bogerts B . Post-mortem studies on bipolar disorder Br J Psychiatry 2000; (in press

  45. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression Biol Psychiatry 1999; 45: 1085–1098

    CAS  PubMed  Google Scholar 

  46. Rajkowska G, Selemon LD, Halaris A . Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder Am J Psychiatry 2000; (under revision

  47. Diekmann S, Baumann B, Schmidt U, Bogerts B . Significant reduction of calretinin-IR neurons in layer II in the anterior cingulate cortex in subjects with affective disorders Soc Neurosci Abs 1998; 24: 386.5

    Google Scholar 

  48. Vincent SL, Todtenkopf MS, Benes FM . A comparison of the density of pyramidal and nonpyramidal neurons in the anterior cingulate cortex of schizophrenics and manic depressives Soc Neurosci 1997; 23: 2199

    Google Scholar 

  49. Benes FM, Kwok EW, Vincent SL, Todtenkopf MS . A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives Biol Psychiatry 1998; 15: 4: 88–97

    Google Scholar 

  50. Rajkowska G . Histopathology of the prefrontal cortex in depression: what does it tell us about dysfunctional monoaminergic circuits Prog Brain Res 2000; 126: 397–412

    CAS  PubMed  Google Scholar 

  51. Manji HK, Potter WZ, Lenox RH . Signal transduction pathways: molecular targets for lithium's action Arch Gen Psychiatry 1995; 52: 531–543

    CAS  PubMed  Google Scholar 

  52. Manji HK, Lenox RH . Signaling: cellular insights into the pathophysiology of bipolar disorder Biol Psychiatry 2000; 48: 518–530

    CAS  PubMed  Google Scholar 

  53. Rajkowska G, Selemon LD, Goldman-Rakic PS . Marked glial neuropathology in prefrontal cortex distinguishes bipolar disorder from schizophrenia Schizophr Res 1997; 24: 41

    Google Scholar 

  54. Rajkowska G . Postmortem studies in blood disorders indicate altered numbers of neurons and glial cells Biol Psychiatry 2000; (in press

  55. Miguel-Hidalgo JJ, Bauco CH, Dilley G, Overholser J, Meltzer H, Stockmeier C et al, GFAP immunoreactivity in the dorsolateral prefrontal cortex separates young from old adults with major depressive disorder Biol Psychiatry 2000; (in press

  56. Ongur D, Drevets WC, Price JL . Glial reduction in the subgenual prefrontal cortex in mood disorders Proc Natl Acad Sci USA 1998; 95: 13290–13295

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Coyle JT, Schwarcz R . Mind glue: implications of glial cell biology for psychiatry Arch Gen Psychiatry 2000; 57: 90–93

    CAS  PubMed  Google Scholar 

  58. LoTurco JJ . Neural circuits in the 21st century: synaptic networks of neurons and glia Proc Natl Acad Sci USA 2000; 97: 8196–8197

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sapolsky RM . Stress, glucocorticoids, and damage to the nervous system: the current state of confusion Stress 1996; 1: 1–19

    CAS  PubMed  Google Scholar 

  60. Starkman MN, Giordani B, Gebarski SS, Berent S, Schork MA, Schteingart DE . Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing's disease Biol Psychiatry 1999; 46: 1595–1602

    CAS  PubMed  Google Scholar 

  61. Simmons NE, Do HM, Lipper MH, Laws ER Jr . Cerebral atrophy in Cushing's disease Surg Neurol 2000; 53: 72–76

    CAS  PubMed  Google Scholar 

  62. DeBellis MD, Keshavan MS, Clark DB, Casey BJ, Giedd JN, Boring AM et al. Developmental traumatology. Part II: Brain development Biol Psychiatry 1999; 45: 1271–1284

    CAS  Google Scholar 

  63. Roettger V, Lipton P . Mechanism of glutamate release from rat hippocampal slices during in vitro ischemia Neuroscience 1996; 75: 677–685

    CAS  PubMed  Google Scholar 

  64. Hokin LE, Dixon JF, Los, GV . Acute inhibition but chronic upregulation and stabilization of glutamate uptake in synaptosomes by lithium. In: Manji HK, Bowden CL, Balmaker RH (eds) Bipolar Medications: Mechanisms of Action American Psychiatric Press: Washington, DC 2000; pp 65–85

    Google Scholar 

  65. Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD . Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders Trends Neurosci 2000; 23: 222–229

    CAS  PubMed  Google Scholar 

  66. Dubovsky S, Murphy J, Christiano J et al. The calcium second messenger system in bipolar disorders: data supporting new research directions J Neuropsychiatry Clin Neurosci 1992; 4: 3–14

    CAS  PubMed  Google Scholar 

  67. Emamghoreishi M, Schlichter L, Li PP, Pariksh S, Sen J, Kamble A et al. High intracellular calcium concentrations in transformed lymphoblasts from subjects with bipolar I disorder Am J Psychiatry 1997; 154: 976–982

    CAS  PubMed  Google Scholar 

  68. Wang JF, Young LT, Li PP, Warsh JJ . Signal transduction abnormalities in bipolar disorder In: Joffe RT, Young LT (eds) Bipolar Disorder: Biological Models and their Clinical Application Marcel Dekker: New York 1997; 41–79

    Google Scholar 

  69. Jacobsen NJ, Lyons I, Hoogendoorn B, Burge S, Kwok PY, O'Donovan MC et al. ATP2A2 mutations in Darier's disease and their relationship to neuropsychiatric phenotypes Hum Mol Genet 1999; 8: 1631–1636

    CAS  PubMed  Google Scholar 

  70. Hough C, Lu SJ, Davis CL, Chuang DM, Post RM . Elevated basal and thapsigargin stimulated intracellular calcium of platelets and lymphocytes from bipolar affective disorder patients measured by a fluorometric microassay Biol Psychiatry 1999; 46: 247–255

    CAS  PubMed  Google Scholar 

  71. Chen G, Zeng WZ, Jiang L, Yuan PX, Zhao J, Manji HK . The mood stabilizing agents lithium and valproate robustly increase the expression of the neuroprotective protein bcl-2 in the CNS J Neurochemistry 1999; 72: 879–882

    CAS  Google Scholar 

  72. Chen RW, Chuang DM . Long term lithium treatment suppresses p53 and Bax expression but increases bcl-2 expression J Biol Chem 1999; 274: 6039–6042

    CAS  PubMed  Google Scholar 

  73. Manji HK, Moore GJ, Chen G . Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol Psychiatry 1999; 46: 929–940

    CAS  PubMed  Google Scholar 

  74. Manji HK, Chen G, Hsiao JK, Masana MI, Moore GJ, Potter WZ . Regulation of signal transduction pathways by mood stabilizing agents: implications for the pathophysiology and treatment of bipolar affective disorder. In: Manji HK, Bowden CL, Balnater RH (eds) Bipolar Medications: Mechanisms of Action American Psychiatric Press: Washington, DC 2000; pp 129–177

    Google Scholar 

  75. Manji HK, Moore GJ, Chen G . Lithium uprgulates the cytoprotective protein bcl-2 in vitro and in the CNS in vivo: a role for neurotrophic and neuroprotective effects in manic-depressive illness J Clin Psychiatry 2000; 61: 82–96

    CAS  PubMed  Google Scholar 

  76. Wang JF, Bown C, Young LT . Differential display PCR reveals novel targets for the mood-stabilizing drug valproate including the molecular chaperone GRP78 Mol Pharmacol 1999; 55: 521–527

    CAS  PubMed  Google Scholar 

  77. Smith MA, Makino S, Kvetnansky R, Post RM . Stress alters the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus J Neurosci 1995; 15: 1768–1777

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Nibuya M, Takahashi M, Russell DS, Duman RS . Repeated stress increases catalytic TrkB mRNA in rat hippocampus Neurosci Lett 1999; 267: 81–84

    CAS  PubMed  Google Scholar 

  79. Thoenen H . Neurotrophins and neuronal plasticity Science 1995; 270: 593–598

    CAS  PubMed  Google Scholar 

  80. Mamounas LA, Blue ME, Siuciak JA, Anthony AC . BDNF promotes the survival and sprouting of serotonergic axons in the rat brain J Neurosci 1995; 15: 7929–7939

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Murray CA, Lynch MA . Evidence that increased hippocampal expression of the cytokine interleukin-1β is a common trigger for age- and stress-induced impairments in long-term potentiation J Neurosci 1998; 18: 2974–2981

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nijhawan D, Honarpour N, Wang X . Apoptosis in neural development and disease Annu Rev Neurosci 2000; 23: 73–87

    CAS  PubMed  Google Scholar 

  83. Adams JM, Cory S . The Bcl-2 protein family: arbiters of cell survival Science 1998; 281: 1322–1326

    CAS  PubMed  Google Scholar 

  84. Merry DE, Korsmeyer SJ . Bcl-2 gene family in the nervous system Ann Rev Neurosci 1997; 20: 245–267

    CAS  PubMed  Google Scholar 

  85. Bruckheimer EM, Cho SH, Sarkiss M, Hermann J, McDonnell TJ . The Bcl-2 gene family and apoptosis Adv Biochem Eng Biotechnol 1998; 62: 75–105

    CAS  PubMed  Google Scholar 

  86. Kroemer G, Reed JC . Mitochondrial control of cell death Nature Med 2000; 6: 513–519

    CAS  PubMed  Google Scholar 

  87. Pinton P, Ferrari D, Magalhaes P, Schulze-Osthoff K, Di Virgilio F, Poaazn T et al. Reduced loading of intracellular Ca(2+) stores and downregulation of capacitative Ca(2+) influx in Bcl-2-overexpressing cells J Cell Biol 2000; 148: 857–862

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hacki J, Egger L, Monney L, Conus S, Rosse T, Fellay I et al. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2 Oncogene 2000; 19: 2286–2295

    CAS  PubMed  Google Scholar 

  89. Kuo TH, Kim HR, Zhu L, Yu Y, Lin HM, Tsang W . Modulation of endoplasmic reticulum calcium pump by Bcl-2 Oncogene 1998; 17: 1903–1910

    CAS  PubMed  Google Scholar 

  90. He H, Lam M, McCormick TS, Distelhorst CW . Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2 J Cell Biol 1997; 138: 1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen DF, Schneider GE, Martinou JC, Tonegawa S . Bcl-2 promotes regeneration of severed axons in mammalian CNS Nature 1997; 385: 434–439

    CAS  PubMed  Google Scholar 

  92. Hilton M, Middleton G, Davies AM . Bcl-2 influences axonal growth rate in embryonic sensory neurons Curr Biol 1997; 7: 798–800

    CAS  PubMed  Google Scholar 

  93. Zhang KZ, Westberg JA, Holtta E, Andersson LC . BCL2 regulates neural differentiation Proc Natl Acad Sci USA 1996; 93: 4504–4508

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Suzuki A, Tsutomi Y . Bcl-2 accelerates the neuronal differentiation: new evidence approaching to the biofunction of bcl-2 in the neuronal system Brain Res 1998; 801: 59–66

    CAS  PubMed  Google Scholar 

  95. Pettman B, Henderson CE . Neuronal cell death Neuron 1998; 20: 633–647

    Google Scholar 

  96. Segal RA, Greenberg ME . Intracellular signaling pathways activated by neurotrophic factors Annu Rev Neurosci 1996; 19: 463–489

    CAS  PubMed  Google Scholar 

  97. Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME . Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism Neuron 1998; 20: 709–726

    CAS  PubMed  Google Scholar 

  98. Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD . Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons Science 1999; 286: 2358–2361

    CAS  PubMed  Google Scholar 

  99. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME . Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms Science 1999; 286: 1358–1362

    CAS  PubMed  Google Scholar 

  100. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA et al. Neurogenesis in the adult human hippocampus Nature Med 1998; 4: 1313–1317

    CAS  PubMed  Google Scholar 

  101. Gould E, Reeves AJ, Graziano MS, Gross CG . Neurogenesis in the neocortex of adult primates Science 1999; 286: 548–552

    CAS  PubMed  Google Scholar 

  102. Gould E, Tanapat P . Stress and hippocampal neurogenesis Biol Psychiatry 1999; 46: 1472–1479

    CAS  PubMed  Google Scholar 

  103. Cameron HA, McKay RD . Restoring production of hippocampal neurons in old age Nat Neurosci 1999; 2: 894–897

    CAS  PubMed  Google Scholar 

  104. Duman RS, Malberg K, Nakagawa S, D'Sa C . Neuronal plasticity and survival in mood disorders Biol Psychiatry 2000; (in press)

  105. Thome J, Impey S, Storm D, Duman RS . Induction of CRE gene expression by antidepressant treatment J Neurosci 2000; (in press

  106. Shieh PB, Hu SC, Bobb K, Timmusk T, Ghosh A . Identification of a signaling pathway involved in calcium regulation of BDNF expression Neuron 1998; 20: 727–740

    CAS  PubMed  Google Scholar 

  107. Nibuya M, Morinobu S, Duman RS . Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments J Neurosci 1995; 15: 7539–7547

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Nibuya M, Nestler EJ, Duman RS . Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus J Neurosci 1996; 16: 2365–2372

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Malberg JE, AJ Eisch, EJ Nestler, RS Duman . Antidepressant treatment increases the birth and survival of hippocampal neurons 2000; (submitted

  110. Nakamura S . Antidepressants induce regeneration of catecholaminergic axon terminals in the rate cerebral cortex Neurosci Lett 1990; 111: 64–68

    CAS  PubMed  Google Scholar 

  111. Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS . Tianeptine attenuates stress-induced morphological changes in the hippocampus Eur J Pharmacol 1992; 222: 157–162

    CAS  PubMed  Google Scholar 

  112. Stewart CA, IC Reid . Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity Psychopharmacology 2000; 148: 217–223

    CAS  PubMed  Google Scholar 

  113. Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK . Enhancement of hippocampal neurogenesis by lithium J Neurochem 2000; 75: 1729–1734

    CAS  PubMed  Google Scholar 

  114. Lu R, Song L, Jope RS . Lithium attenuates p53 levels in human neuroblastoma SH-SH-SY5Y cells Neuroreport 1999; 10: 1123–1125

    CAS  PubMed  Google Scholar 

  115. Klein PS, Melton DA . A molecular mechanism for the effect of lithium on development Proc Natl Acad Sci USA 1996; 93: 8455–8459

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Dale TC . Signal transduction by the Wnt family of ligands Biochem J 1998; 329: 209–223

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Willert K, Nusse R . Beta-catenin: a key mediator of Wnt signaling Curr Opin Genet Dev 1998; 8: 95–102

    CAS  PubMed  Google Scholar 

  118. Jope RS . Anti-bipolar therapy: mechanism of action of lithium Mol Psychiatry 1999; 4: 117–128

    CAS  PubMed  Google Scholar 

  119. Zhang Z, Hartmann H, Do VM, Abramowski D, Struchler-Pierrat C, Staufenbiel M et al. Destabilization of beta catenin by mutations in presenilin-1 potentiates neuronal apoptosis Nature 1998; 395: 698–702

    CAS  PubMed  Google Scholar 

  120. Nishimura M, Yu G, Levesque G, Zhang DM et al. Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of beta-catenin, a component of the presenilin protein complex Nature Med 1999; 5: 164–169

    CAS  PubMed  Google Scholar 

  121. Pap M, Cooper GM . Role of glycogen synthase kinase-3 in the phosphatidylinositol 3 Kinase/Akt cell survival pathway J Biol Chem 1998; 273: 19929–19932

    CAS  PubMed  Google Scholar 

  122. Bijur GM, De Sarno P, Jope RS . Glycogen synthase kinase-3 facilitates staurosporine- and heat shock-induced apoptosis: protection by lithium J Biol Chem 2000; 275: 7583–7590

    CAS  PubMed  Google Scholar 

  123. Munoz-Montano JR, Moreno FJ, Avila J, Diaz-Nido J . Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons FEBS Lett 1997; 411: 183–188

    CAS  PubMed  Google Scholar 

  124. Hong M, Chen DC, Klein PS, Lee VM . Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3 J Biol Chem 1997; 272: 25326–25332

    CAS  PubMed  Google Scholar 

  125. Lovestone S, Davis DR, Webster MT, Kaech S, Brion JP, Matus A et al. Lithium reduces tau phosphorylation: effects in living cells and in neurons at therapeutic concentrations Biol Psychiatry 1999; 45: 995–1003

    CAS  PubMed  Google Scholar 

  126. Hetman M, Cavanaugh JE, Kimelman D, Xia Z . Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal J Neurosci 2000; 20: 2567–2574

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen G, Huang LD, Jiang YM, Manji HK . The mood stabilizing agent valproate inhibits the activity of glycogen synthase kinase 3 J Neurochem 1999; 72: 1327–1330

    CAS  PubMed  Google Scholar 

  128. Volonte C, Rukenstein A . Lithium promotes short-term survival of PC12 cells after serum and NGF deprivation Lithium 1993; 4: 211–219

    CAS  Google Scholar 

  129. D'Mello SR, Anelli R, Calissano P . Lithium induces apoptosis in immature cerebellar granule cells but promotes survival of mature neurons Exp Cell Res 1994; 211: 332–338

    CAS  PubMed  Google Scholar 

  130. Li R, Shen Y, El-Mallakh RS . Lithium protects against ouabain-induced cell death Lithium 1994; 5: 211–216

    CAS  Google Scholar 

  131. Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J . Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration FEBS Lett 1999; 453: 260–264

    CAS  PubMed  Google Scholar 

  132. Inouye M, Yamamura H, Nakano A . Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum J Radiat Res (Tokyo) 1995; 36: 203–208

    CAS  Google Scholar 

  133. Pascual T, Gonzalez JL . A protective effect of lithium on rat behaviour altered by ibotenic acid lesions of the basal forebrain cholinergic system Brain Res 1995; 695: 289–292

    CAS  PubMed  Google Scholar 

  134. Grignon S, Levy N, Couraud F, Bruguerolle B . Tyrosine kinase inhibitors and cycloheximide inhibit Li+ protection of cerebellar granule neurons switched to non depolarizing medium Eur J Pharmacol 1996; 315: 111–114

    CAS  PubMed  Google Scholar 

  135. Nonaka S, Hough CJ, Chuang DM . Chronic lithium treatment robustly protects neurons in the central nervous system against excitotoxicity by inhibiting N-methyl-D-aspartate receptor-mediated calcium influx Proc Natl Acad Sci USA 1998; 95: 2642–2647

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Nonaka S, Katsube N, Chuang DM . Lithium protects rat cerebellar granule cells against apoptosis induced by anticonvulsants, phenytoin and carbamazepine J Pharmacol Exp Ther 1998; 286: 539–547

    CAS  PubMed  Google Scholar 

  137. Arendt T, Lehmann K, Seeger G, Gartner U . Synergistic effects of tetrahydroaminoacridine and lithium on cholinergic function after excitotoxic basal forebrain lesions in rat Pharmacopsychiatry 1999; 32: 242–247

    CAS  PubMed  Google Scholar 

  138. Sparapani M, Virgili M, Ortali F, Contestabile A . Effects of chronic lithium treatment on ornithine decarboxylase induction and excitotoxic neuropathology in the rat Brain Res 1997; 765: 164–168

    CAS  PubMed  Google Scholar 

  139. Nonaka S, Chuang DM . Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats Neuroreport 1998; 9: 2081–2084

    CAS  PubMed  Google Scholar 

  140. Chuang DM, Wei H, Qin Z, Wei W, Wang Y, Qian Y . Lithium inhibits striatal damage in an animal model of Huntington disease Soc Neurosci Abs 1999; 241.7

  141. Chalecka-Franaszek E, Chuang DM . Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons Proc Natl Acad Sci USA 1999; 96: 8745–8750

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kempermann G, Gage FH . Experience-dependent regulation of adult hippocampal neurogenesis: effects of long-term stimulation and stimulus withdrawal Hippocampus 1999; 9: 321–332

    CAS  PubMed  Google Scholar 

  143. Bruno V, Sortino MA, Scapagnini U, Nicoletti F, Canonico P . Antidegenerative effects of Mg(2+) valproate in cultured cerebellar neurons Funct Neurol 1995; 10: 121–130

    CAS  PubMed  Google Scholar 

  144. Mark RJ, Ashford JW, Goodman Y, Mattson MP . Anticonvulsants attenuate amyloid beta peptide neurotoxicity, Ca2+ deregulation, and cytoskeletal pathology Neurobiol Aging 1995; 16: 187–198

    CAS  PubMed  Google Scholar 

  145. Mora A, Gonzalez-Polo RA, Fuentes JM, Soler G, Centeno F . Different mechanisms of protection against apoptosis by valproate and Li+ Eur J Biochem 1999; 266: 886–891

    CAS  PubMed  Google Scholar 

  146. Chen G, Yuan PX, Jiang Y, Huang LD, Manji HK . Valproate robustly enhances AP-1 mediated gene expression Mol Brain Res 1999; 64: 52–58

    CAS  PubMed  Google Scholar 

  147. Gutkind JS . The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades J Biol Chem 1998; 273: 1839–1842

    CAS  PubMed  Google Scholar 

  148. Finkbeiner S . CREB couples neurotrophin signals to survival messages Neuron 2000; 25: 11–14

    CAS  PubMed  Google Scholar 

  149. Chen G, Yuan PX, Huong LD, Gutkind JS, Manji HK . Valproic acid activates mitogen activated protein kinases and promotes neurite growth J Biol Chem 2000; (under revision

  150. Moore GJ, Bebchuk JM, Hasanat K, Chen G, Seraji-Bozorgzad N, Wilds IB et al. Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2's neurotrophic effects? Biol Psychiatry 2000; 48: 1–8

    CAS  PubMed  Google Scholar 

  151. Moore GJ, Wilds IB, Bebchuk JM, Mitchell S, Chen G, Glitz DA et al. Pharmacologic in human grey matter The Lancet 2000; (in press

  152. Birken DL, Oldendorf WH . N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain Neurosci Biobehav Rev 1989; 13: 23–31

    CAS  PubMed  Google Scholar 

  153. MacQueen GM, Young LT, Robb JC, Marriott M, Cooke RG, Joffe RT . Effect of number of episodes on wellbeing and functioning of patients with bipolar disorder Acta Psychiatr Scand 2000; 101: 374–381

    CAS  PubMed  Google Scholar 

  154. Strakowski SM, Keck PE Jr, McElroy SL, West SA, Sax KW, Hawkins JM et al. Twelve-month outcome after a first hospitalization for affective psychosis Arch Gen Psychiatry 1998; 55: 49–55

    CAS  PubMed  Google Scholar 

  155. Keck PE Jr, McElroy SL, Strakowski SM, West SA, Sax KW, Hawkins JM et al. 12-month outcome of patients with bipolar disorder following hospitalization for a manic or mixed episode Am J Psychiatry 1998; 155: 646–652

    PubMed  Google Scholar 

  156. Strakowski SM, Wilson DR, Tohen M et al. Structural brain abnormalities in first-episode mania Biol Psychiatry 1993; 33: 602–609

    CAS  PubMed  Google Scholar 

  157. Doraiswamy PM, MacFall J, Krishnan KR, O'Connor C, Wan X, Benaur M et al. Magnetic resonance assessment of cerebral perfusion in depressed cardiac patients: preliminary findings Am J Psychiatry 1999; 156: 1641–1643

    CAS  PubMed  Google Scholar 

  158. Steffens DC, Helms MJ, Krishnan KR, Burke G . Cerebrovascular disease and depression symptoms in the cardiovascular health study Stroke 1999; 30: 2159–2166

    CAS  PubMed  Google Scholar 

  159. Pillay SS, Renshaw PF, Bonello CM, Lafer B, Fava M, Yurgelun-Todd D . A quantitative magnetic resonance imaging study of caudate and lenticular nucleus gray matter volume in primary unipolar major depression: relationship to treatment response and clinical severity Psychiatry Res 1998; 84: 61–74

    CAS  PubMed  Google Scholar 

  160. Vakili K, Pillay SS, Lafer B, Fava M, Renshaw PF, Bonello-Cintron BF et al. Hippocampal volume in primary unipolar major depression: a magnetic resonance imaging study Biol Psychiatry 2000; 47: 1087–1090

    CAS  PubMed  Google Scholar 

  161. Zamzami N, Brenner C, Marzo I, Susin SA, Kroemer G . Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins Oncogene 1998; 16: 2265–2282

    CAS  PubMed  Google Scholar 

  162. Guo Z, Zhou D, Schultz PG . Designing small-molecule switches for protein—protein interactions Science 2000; 288: 2042–2045

    CAS  PubMed  Google Scholar 

  163. Jacobs BL, Praag H, Gage FH . Adult brain neurogenesis and psychiatry: a novel theory of depression Mol Psychiatry 2000; 5: 262–269

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the numerous thoughtful comments and invaluable input of Ronald S Duman, PhD. Ian Wilds and Navid Seraji-Bozorgzad generated the cover figure and Celia Knobelsdorf provided outstanding editorial assistance. The authors’ research is supported by USPHS grants MH57743 (HKM and GC), MH59107 (HKM and GJM), 55872 (GR), a Theodore and Vada Stanley Foundation Bipolar Center Grant (HKM and GC), NARSAD Young (GJM and GR) and Independent (HKM and GR) Investigator Awards, and Joseph Young Sr Research grants (HKM, GJM, GC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H K Manji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manji, H., Moore, G., Rajkowska, G. et al. Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry 5, 578–593 (2000). https://doi.org/10.1038/sj.mp.4000811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000811

Keywords

This article is cited by

Search

Quick links