Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Stem and endothelial progenitor cells in erection biology

Abstract

Erectile dysfunction (ED) is defined as the consistent inability to obtain or maintain an erection for satisfactory sexual relations. The past 20 years of basic science research on erection physiology has been devoted to investigating the pathogenesis of ED and has led to the conclusion that ED is predominately a disease of vascular origin with dramatic changes occurring in the endothelium. Research has also led to an understanding of the biochemical factors and intracellular mechanisms responsible for corporal smooth muscle contraction and relaxation and the influence of endothelium-derived relaxing factors. The development of methods to deliver both stem and endothelial cells to the penis has kindled a keen interest in treating ED with gene- and cell-based therapies. In this paper, erection physiology and stem cell biology is reviewed, and the potential application of novel cell-based therapies for the treatment of ED is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Feldman HA, Goldstein T, Hatzichristou DG, Krane RJ, McKinlay JB . Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J Urol 1994; 151: 54–61.

    Article  CAS  PubMed  Google Scholar 

  2. Lue TF . Erectile dysfunction. N Engl J Med 2000; 342: 1802–1813.

    CAS  PubMed  Google Scholar 

  3. Kloner RA . Erectile dysfunction in the cardiac patient. Curr Urol Rep 2003; 4: 466–471.

    PubMed  Google Scholar 

  4. Selvin E, Burnett AL, Platz EA . Prevalence and risk factors for erectile dysfunction in the US. Am J Med 2007; 120: 151–157.

    PubMed  Google Scholar 

  5. Schraudenbach P, Bermejo CE . Management of the complications of radical prostatectomy. Curr Urol Rep 2007; 8: 197–202.

    PubMed  Google Scholar 

  6. Burnett AL . Erectile dysfunction. J Urol 2006; 175: S25–S31.

    PubMed  Google Scholar 

  7. Chitaley K, Webb RC, Mills TM . The ups and downs of Rho-kinase and penile erection: upstream regulators and downstream substrates of rho-kinase and their potential role in the erectile response. Int J Impot Res 2003; 15: 105–109.

    CAS  PubMed  Google Scholar 

  8. Bivalacqua TJ, Liu T, Musicki B, Champion HC, Burnett AL . Endothelial nitric oxide synthase keeps erection regulatory function balance in the penis. Eur Urol 2007; 51: 1732–1740.

    CAS  PubMed  Google Scholar 

  9. Burnett AL . Novel nitric oxide signaling mechanisms regulate the erectile response. Int J Impot Res 2004; 16: S15–S19.

    CAS  PubMed  Google Scholar 

  10. Hurt J, Musicki B, Palese MA, Crone JK, Becker R, Moriarty J . Akt-dependent phosphorylation of endothelial nitric-oxide synthase mediates penile erection. Proc Natl Acad Sci USA 2002; 99: 4061–4066.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Aversa A, Bruzziches R, Vitale C, Marazzi G, Francomano D, Barbaro G et al. Chronic sildenafil in men with diabetes and erectile dysfunction. Expert Opin Drug Metab Toxicol 2007; 3: 451–464.

    CAS  PubMed  Google Scholar 

  12. Kendirci M, Bejma J, Hellstrom WJG . Update on erectile dysfunction in prostate cancer patients. Curr Opin Urol 2006; 16: 186–195.

    PubMed  Google Scholar 

  13. Gonzalez-Cadavid NF, Rajfer J . Molecular pathophysiology and gene therapy of aging-related erectile dysfunction. Exp Gerontol 2004; 39: 1705–1712.

    CAS  PubMed  Google Scholar 

  14. Bochinski D, Lin GT, Nunes L, Carrion R, Rahman N, Lin CS et al. The effect of neural embryonic stem cell therapy in a rat model of cavernosal nerve injury. BJU Int 2004; 94: 904–909.

    PubMed  Google Scholar 

  15. Kim Y, de Miguel F, Usiene I, Kwon D, Yoshimura N, Huard J et al. Injection of skeletal muscle-derived cells into the penis improves erectile function. Int J Impot Res 2006; 18: 329–334.

    CAS  PubMed  Google Scholar 

  16. Bivalacqua TJ, Deng W, Kendirci M, Usta MF, Robinson C, Taylor BK et al. Mesenchymal stem cells alone or ex vivo gene modified with endothelial nitric oxide synthase reverse age-associated erectile dysfunction. Am J Physiol Heart Circ Physiol 2007; 292: H1278–H1290.

    CAS  PubMed  Google Scholar 

  17. Song YS, Lee HJ, Park IH, Kim WK, Ku JH, Kim SU . Potential differentiation of human mesenchymal stem cell transplanted in rat corpus cavernosum toward endothelial or smooth muscle cells. Int J Impot Res 2007; 19: 378–385.

    CAS  PubMed  Google Scholar 

  18. Bredesen DE, Rao RV, Mehlen P . Cell death in the nervous system. Nature 2006; 443: 796–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bergmanson JP, Sheldon TM, Goosey JD . Fuchs' endothelial dystrophy: a fresh look at an aging disease. Opthalmic Physiol Opt 1999; 19: 210–222.

    CAS  Google Scholar 

  20. Marzetti E, Leeuwenburgh C . Skeletal muscle apoptosis, sarcopenia and frailty at old age. Exp Gerontol 2006; 41: 1238.

    Google Scholar 

  21. Grazzette LP, Rosenzweig A . Role of apoptosis in heart failure. Heart Fail Clin 2005; 1: 251–261.

    Google Scholar 

  22. Lee SC, Pervaiz S . Apoptosis in the pathophysiology of diabetes mellitus. Int J Biochem Cell Biol 2007; 39: 497–504.

    CAS  PubMed  Google Scholar 

  23. Kurz B, Lemke AK, Fay J, Pufe T, Grodzinsky AJ, Schunke M . Pathomechanisms of cartilage destruction by mechanical injury. Ann Anat 2005; 187: 473–485.

    CAS  PubMed  Google Scholar 

  24. Harley CB, Rao MS . Human embryonic vs adult stem cells for transplantation therapies. In: Chiu AY, Rao Ms (ed). Human Embryonic Stem Cells. Humana Press: Totowa, 2003, pp 239–264.

    Google Scholar 

  25. Morrison SJ, Shah NM, Anderson DJ . Regulatory mechanisms in stem cell biology. Cell 1997; 88: 287–298.

    CAS  PubMed  Google Scholar 

  26. Seydoux G, Braun RE . Pathway to totipotency: lessons from germ cells. Cell 2006; 127: 891–904.

    CAS  PubMed  Google Scholar 

  27. Hoffman JA, Merrill BJ . New and renewed perspectives on embryonic stem cell pluripotency. Front Biosci 2007; 12: 3321–3332.

    CAS  PubMed  Google Scholar 

  28. Spangrude GJ, Heimfeld S, Weissman IL . Purification and characterization of mouse hematopoietic stem cells. Science 1988; 241: 58–62.

    CAS  PubMed  Google Scholar 

  29. Weissman IL, Anderson DJ, Gage F . Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001; 17: 387–403.

    CAS  PubMed  Google Scholar 

  30. Forbes S, Vig P, Poulsom R, Thomas H, Alison M . Hepatic stem cells. J Pathol 2002; 197: 510–518.

    PubMed  Google Scholar 

  31. Bjerknes M, Cheng H . Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 1999; 116: 7–14.

    CAS  PubMed  Google Scholar 

  32. Mills JC, Andersson N, Hong CV, Stappenbeck TS, Gordon JI . Molecular characterization of mouse gastric epithelial progenitor cells. Proc Natl Acad Sci USA 2002; 99: 14819–14824.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM . Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 2000; 102: 451–461.

    CAS  PubMed  Google Scholar 

  34. Schermer A, Galvin S, Sun TT . Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 1986; 103: 49–62.

    CAS  PubMed  Google Scholar 

  35. Nguyen MM, Lieu DK, deGraffenried LA, Isseroff RR, Kurzrock EA . Urothelial progenitor cells: regional differences in the rat bladder. Cell Prolif 2007; 40: 157–165.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J . Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 1998; 36: 249–266.

    CAS  PubMed  Google Scholar 

  37. Kim CB . Advancing the field of lung stem cell biology. Front Biosci 2007; 12: 3117–3124.

    CAS  PubMed  Google Scholar 

  38. De Marzo AM, Meeker AK, Epstein JI, Coffey DS . Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. Am J Pathol 1998; 153: 911–919.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Croagh D, Phillips WA, Redvers R, Thomas RJ, Kaur P . Identification of candidate murine esophageal stem cells using a combination of cell kinetic studies and cell surface markers. Stem Cells 2007; 25: 313–318.

    CAS  PubMed  Google Scholar 

  40. Barile L, Messina E, Giacomello A, Marbán E . Endogenous cardiac stem cells. Prog Cardiovasc Dis 2007; 50: 31–48.

    CAS  PubMed  Google Scholar 

  41. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M et al. Defining the epithelial stem cell niche in skin. Science 2004; 303: 359–363.

    CAS  PubMed  Google Scholar 

  42. Lévesque JP, Winkler IG, Larsen SR, Rasko JE . Mobilization of bone marrow-derived progenitors. In: Kauser K, Zeiher A-M (ed). Bone Marrow-Derived Progenitors. Springer: Berlin, 2007, pp 3–36.

    Google Scholar 

  43. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49.

    CAS  PubMed  Google Scholar 

  44. Wessels H, Williams SK . Endothelial cell transplantation into the corpus cavernosum: moving towards cell-based gene therapy. J Urol 1999; 162: 2162–2164.

    Google Scholar 

  45. Tan PH, Tan PL, George AJ, Chan CL . Gene therapy for transplantation with viral vectors—how much of the promise has been realised? Expert Opin Biol Ther 2006; 6: 759–772.

    CAS  PubMed  Google Scholar 

  46. Deng W, Bivalacqua TJ, Chattergoon NN, Hyman AL, Jeter Jr JR, Kadowitz PJ . Adenoviral gene transfer of eNOS: high-level expression in ex vivo expanded marrow stromal cells. Am J Physiol Cell Physiol 2003; 285: C1322–C1329.

    CAS  PubMed  Google Scholar 

  47. Bivalacqua TJ, Deng W, Champion HC, Hellstrom WJ, Kadowitz PJ . Gene therapy techniques for the delivery of endothelial nitric oxide synthase to the corpora cavernosa for erectile dysfunction. Methods Mol Biol 2004; 279: 173–185.

    CAS  PubMed  Google Scholar 

  48. Vrentzos GE, Paraskevas KI, Mikhailidis DP . Dyslipidemia as a risk factor for erectile dysfunction. Curr Med Chem 2007; 14: 1765–1770.

    CAS  PubMed  Google Scholar 

  49. Billups KL, Bank AJ, Padma-Nathan H, Katz S, Williams R . Erectile dysfunction is a marker for cardiovascular disease: results of the Minority Health Institute Expert Advisory Panel. J Sex Med 2005; 2: 40–50.

    PubMed  Google Scholar 

  50. Musicki B, Burnett AL . eNOS function and dysfunction in the penis. Exp Biol Med (Maywood) 2006; 231: 154–165.

    CAS  Google Scholar 

  51. Bivalacqua TJ, Usta MF, Champion HC, Kadowitz PJ, Hellstrom WJG . Endothelial dysfunction in erectile dysfunction: role of the endothelium in erectile physiology and disease. J Androl 2003; 24: S17–S37.

    CAS  PubMed  Google Scholar 

  52. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    CAS  PubMed  Google Scholar 

  53. Kopen G, Prockop D, Phinney D . Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999; 96: 10711–10716.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 2003; 100: 8407–8411.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Aurich I, Mueller LP, Aurich H, Leutzkendorf J, Tisljar K, Dollinger MM et al. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 2007; 56: 405–415.

    CAS  PubMed  Google Scholar 

  56. Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 2006; 194: 664–673.

    CAS  PubMed  Google Scholar 

  57. Sarugaser R, Lickorish D, Baksh D, Hosseini M, Davies JE . Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 2005; 23: 220–229.

    PubMed  Google Scholar 

  58. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279–4295.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP . Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001; 44: 1928–1942.

    CAS  PubMed  Google Scholar 

  60. De Bari C, Dell'Accio F, Luyten FP . Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 2001; 44: 85–95.

    CAS  PubMed  Google Scholar 

  61. Salingcarnboriboon R, Yoshitake H, Tsuji K, Obinata M, Amagasa T, Nifuji A et al. Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res 2003; 287: 289–300.

    CAS  PubMed  Google Scholar 

  62. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364: 149–155.

    CAS  PubMed  Google Scholar 

  63. Sabatini F, Petecchia L, Tavian M, de Villeroche VJ, Rossi GA, Brouty-Boye D . Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Invest 2005; 85: 962–971.

    CAS  PubMed  Google Scholar 

  64. da Silva Mereilles L, Chagastelles PC, Nardi NB . Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 2006; 119: 2204–2213.

    Google Scholar 

  65. Jiang W, Ma A, Wang T, Han K, Liu Y, Zhang Y et al. Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo: a time-series study. Pflugers Arch 2006; 453: 43–52.

    CAS  PubMed  Google Scholar 

  66. Nagaya N, Fujii T, Iwase T, Ohgushi H, Itoh T, Uematsu M et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 2004; 287: H2670–H2676.

    CAS  PubMed  Google Scholar 

  67. Giordano A, Galderisi U, Marino IR . From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007; 211: 27–35.

    CAS  PubMed  Google Scholar 

  68. Kajstura J, Rota M, Whang B, Cascapera S, Hosoda T, Bearzi C et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ Res 2005; 96: 127–137.

    CAS  PubMed  Google Scholar 

  69. Wang XJ, Li QP . The roles of mesenchymal stem cells (MSCs) therapy in ischemic heart diseases. Biochem Biophys Res Commun 2007; 359: 189–193.

    CAS  PubMed  Google Scholar 

  70. Caplan AI, Dennis JE . Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006; 98: 1076–1084.

    CAS  PubMed  Google Scholar 

  71. Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF . Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 2005; 5: 1571–1584.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringdén O . HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31: 890–896.

    CAS  PubMed  Google Scholar 

  73. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–1441.

    PubMed  Google Scholar 

  74. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE . Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 2006; 108: 2114–2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu X, Huang L, Zhou Q, Song Y, Li A, Jin J et al. Mesenchymal stem cells participating in ex vivo endothelium repair and its effect on vascular smooth muscle cells growth. Int J Cardiol 2005; 105: 274–282.

    PubMed  Google Scholar 

  76. Wang T, Xu Z, Jiang W, Ma A . Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell. Int J Cardiol 2006; 109: 74–81.

    PubMed  Google Scholar 

  77. Kim SW, Han H, Chae GT, Lee SH, Bo S, Yoon JH et al. Successful stem cell therapy using umbilical cord blood-derived multipotent stem cells for Buerger's disease and ischemic limb disease animal model. Stem Cells 2006; 24: 1620–1626.

    PubMed  Google Scholar 

  78. Moon MH, Kim SY, Kim YJ, Kim SJ, Lee JB, Bae YC et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem 2006; 17: 279–290.

    CAS  PubMed  Google Scholar 

  79. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.

    CAS  PubMed  Google Scholar 

  80. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005; 353: 999–1007.

    CAS  PubMed  Google Scholar 

  81. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952–958.

    CAS  PubMed  Google Scholar 

  82. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000; 95: 3106–3112.

    CAS  PubMed  Google Scholar 

  83. Massa M, Rosti V, Ramajoli I, Campanelli R, Pecci A, Viarengo G et al. Circulating CD34+, CD133+, and vascular endothelial growth factor receptor 2-positive endothelial progenitor cells in myelofibrosis with myeloid metaplasia. J Clin Oncol 2005; 23: 5688–5695.

    PubMed  Google Scholar 

  84. Dome B, Timar J, Dobos J, Meszaros L, Raso E, Paku S et al. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 2006; 66: 7341–7347.

    CAS  PubMed  Google Scholar 

  85. Kondo T, Hayashi M, Takeshita K, Numaguchi Y, Kobayashi K, Iino S et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 2004; 24: 1442–1447.

    CAS  PubMed  Google Scholar 

  86. Schmidt-Lucke C, Rössig L, Fichtlscherer S, Vasa M, Britten M, Kämper U et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 2005; 111: 2981–2987.

    PubMed  Google Scholar 

  87. Schatteman GC, Dunwald M, Jiao C . Biology of bone marrow-derived endothelial precursors. Am J Physiol Heart Circ Physiol 2007; 292: H1–H18.

    CAS  PubMed  Google Scholar 

  88. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP . Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000; 105: 71–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Prater DN, Case J, Ingram DA, Yoder MC . Working hypothesis to redefine endothelial progenitor cells. Leukemia 2007; 21: 1141–1149.

    CAS  PubMed  Google Scholar 

  90. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109: 1801–1809.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ingram DA, Caplice NM, Yoder MC . Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 2005; 106: 1525–1531.

    CAS  PubMed  Google Scholar 

  92. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Med 2004; 10: 858–864.

    CAS  PubMed  Google Scholar 

  93. Ceradini DJ, Gurtner GC . Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 2005; 15: 57–63.

    CAS  PubMed  Google Scholar 

  94. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 2000; 97: 3422–3427.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Cabellero S, Sengupta N, Azfal A, Chang KH, Li Calzi S, Guberski DL et al. Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes 2007; 56: 960–967.

    Google Scholar 

  96. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ . Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 2004; 110: 3300–3305.

    PubMed  Google Scholar 

  97. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434–438.

    CAS  PubMed  Google Scholar 

  98. Werner N, Junks F, Laufs U, Link A, Walenta K, Bohm M et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 2003; 93: e17–e24.

    CAS  PubMed  Google Scholar 

  99. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103: 634–637.

    CAS  PubMed  Google Scholar 

  100. Leor J, Marber M . Endothelial progenitors: a new Tower of Babel? J Am Coll Cardiol 2006; 48: 1588–1590.

    PubMed  Google Scholar 

  101. Dzau VJ, Gnecchi M, Pachori AS, Morello F, Melo LG . Therapeutic potential of endothelial progenitor cells in cardiovascular diseases. Hypertension 2005; 46: 7–18.

    CAS  PubMed  Google Scholar 

  102. Borgquist R, Gudmundsson P, Winter R, Nilsson P, Willenheimer R . Erectile dysfunction in healthy subjects predicts reduced coronary flow velocity reserve. Int J Cardiol 2006; 112: 166–170.

    PubMed  Google Scholar 

  103. Tikkanen MJ, Jackson G, Tammela T, Assmann G, Palomäki A, Kupari M et al. Erectile dysfunction as a risk factor for coronary heart disease: implications for prevention. Int J Clin Pract 2007; 61: 265–268.

    CAS  PubMed  Google Scholar 

  104. Watts GF, Chew KK, Stuckey BG . The erectile–endothelial dysfunction nexus: new opportunities for cardiovascular risk prevention. Nat Clin Pract Cardiovasc Med 2007; 4: 263–273.

    CAS  PubMed  Google Scholar 

  105. Li JM, Shah AM . Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol 2004; 287: R1014–R1030.

    CAS  PubMed  Google Scholar 

  106. Foresta C, Caretta N, Lana A, Cabrelle A, Palu G, Ferlin A . Circulating endothelial progenitor cells in subjects with erectile dysfunction. Int J Impot Res 2005; 17: 288–290.

    CAS  PubMed  Google Scholar 

  107. Baumhäkel M, Werner N, Böhm M, Nickenig G . Circulating endothelial progenitor cells correlate with erectile function in patients with coronary heart disease. Eur Heart J 2006; 27: 2184–2188.

    PubMed  Google Scholar 

  108. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003; 9: 1370–1376.

    CAS  PubMed  Google Scholar 

  109. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Foresta C, Caretta N, Lana A, De Toni L, Biagioli A, Vinanzi C et al. Relationship between vascular damage degrees and endothelial progenitor cells in patients with erectile dysfunction: effect of vardenafil administration and PDE5 expression in the bone marrow. Eur Urol 2007; 51: 1411–1417.

    CAS  PubMed  Google Scholar 

  111. Foresta C, Ferlin A, De Toni L, Lana A, Vinanzi C, Galan A et al. Circulating endothelial progenitor cells and endothelial function after chronic tadalafil treatment in subjects with erectile dysfunction. Int J Impot Res 2006; 18: 484–488.

    CAS  PubMed  Google Scholar 

  112. Furey MJ, Midha R, Xu QG, Belkas J, Gordon T . Prolonged target deprivation reduces the capacity of injured motoneurons to regenerate. Neurosurgery 2007; 60: 723–732.

    PubMed  Google Scholar 

  113. Amit M, Itskovitz-Eldor J . Derivation and maintenance of human embryonic stem cells. Methods Mol Biol 2006; 331: 43–53.

    PubMed  Google Scholar 

  114. Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R . Human embryonic stem cell lines derived from single blastomeres. Nature 2006; 444: 481–485.

    CAS  PubMed  Google Scholar 

  115. Bin Z, Sheng LG, Gang ZC, Hong J, Jun C, Bo Y et al. Efficient cardiomyocyte differentiation of embryonic stem cells by bone morphogenetic protein-2 combined with visceral endoderm-like cells. Cell Biol Int 2006; 30: 769–776.

    PubMed  Google Scholar 

  116. Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H et al. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 2007; 45: 1229–1239.

    CAS  PubMed  Google Scholar 

  117. Rufaihah AJ, Haider HK, Heng BC, Ye L, Toh WS, Tian XF et al. Directing endothelial differentiation of human embryonic stem cells via transduction with an adenoviral vector expressing the VEGF(165) gene. J Gene Med 2007; 9: 452–461.

    CAS  PubMed  Google Scholar 

  118. Iuchi S, Dabelsteen S, Easley K, Rheinwald JG, Green H . Immortalized keratinocyte lines derived from human embryonic stem cells. Proc Natl Acad Sci USA 2006; 103: 1792–1797.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Jiang W, Shi Y, Zhao D, Chen S, Yong J, Zhang J et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 2007; 17: 333–344.

    CAS  PubMed  Google Scholar 

  120. Salero E, Hatten ME . Differentiation of ES cells into cerebellar neurons. Proc Natl Acad Sci USA 2007; 104: 2997–3002.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kawaguchi J, Mee PJ, Smith AG . Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone 2005; 36: 758–769.

    CAS  PubMed  Google Scholar 

  122. Lamba DA, Karl MO, Ware CB, Reh TA . Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci USA 2006; 103: 12769–12774.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A et al. Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. Faseb J 2007; 21: 1345–1357.

    CAS  PubMed  Google Scholar 

  124. Deasy BM, Jankowski RJ, Huard J . Muscle-derived stem cells: characterization and potential for cell-mediated therapy. Blood Cells Mol Dis 2001; 27: 924–933.

    CAS  PubMed  Google Scholar 

  125. Deasy BM, Gharaibeh BM, Pollett JB, Jones MM, Lucas MA, Kanda Y et al. Long-term self-renewal of postnatal muscle-derived stem cells. Mol Biol Cell 2005; 16: 3323–3333.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 2002; 157: 851–864.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Jankowski RJ, Deasy BM, Huard J . Muscle-derived stem cells. Gene Therapy 2002; 9: 642–647.

    CAS  PubMed  Google Scholar 

  128. Cao B, Zheng B, Jankowski RJ, Kimura S, Ikezawa M, Deasy B et al. Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential. Nat Cell Biol 2003; 5: 640–646.

    CAS  PubMed  Google Scholar 

  129. Tamaki T, Uchiyama Y, Okada Y, Ishikawa T, Sato M, Akastuka A et al. Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells. Circulation 2005; 112: 2857–2866.

    PubMed  Google Scholar 

  130. Huard J, Yokoyama T, Pruchnic R, Qu Z, Li Y, Lee JY et al. Muscle-derived cell-mediated ex vivo gene therapy for urological dysfunction. Gene Therapy 2002; 9: 1617–1626.

    CAS  PubMed  Google Scholar 

  131. Lee JY, Cannon TW, Pruchnic R, Fraser MO, Huard J, Chancellor MB . The effects of periurethral muscle-derived stem cell injection on leak point pressure in a rat model of stress urinary incontinence. Int Urogynecol J Pelvic Floor Dysfunct 2003; 14: 31–37.

    CAS  PubMed  Google Scholar 

  132. Lee JY, Paik SY, Yuk SH, Lee JH, Ghil SH, Lee SS . Long term effects of muscle-derived stem cells on leak point pressure and closing pressure in rats with transected pudendal nerves. Mol Cells 2004; 18: 309–313.

    CAS  PubMed  Google Scholar 

  133. Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC . Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 2005; 105: 2783–2786.

    CAS  PubMed  Google Scholar 

  134. Cashen AF, Lazarus HM, Devine SM . Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF? Bone Marrow Transplant 2007; 39: 577–588.

    CAS  PubMed  Google Scholar 

  135. Vernet D, Nolazco G, Cantini L, Magee TR, Qian A, Rajfer J et al. Evidence that osteogenic progenitor cells in the human tunica albuginea may originate from stem cells: implications for Peyronie's disease. Biol Reprod 2005; 73: 1199–1210.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T J Bivalacqua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strong, T., Gebska, M., Champion, H. et al. Stem and endothelial progenitor cells in erection biology. Int J Impot Res 20, 243–254 (2008). https://doi.org/10.1038/sj.ijir.3901635

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijir.3901635

Keywords

This article is cited by

Search

Quick links