Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Bidirectional promoter interference between two widely used internal heterologous promoters in a late-generation lentiviral construct

Abstract

Gene transfer vectors encoding two or more genes are potentially powerful research tools and are poised to play an increasingly important role in gene therapy applications. Common strategies employed to express more than one transgene per vector include the use of multiple promoters, internal ribosome entry site (IRES) elements, splicing signals and fusion proteins. Of these, the IRES elements and multiple promoters have been most widely used. The use of multiple promoters, however, may be compromised by interference between promoters, promoter silencing and vector rearrangements or deletions. In this study, we demonstrate promoter interference between two internal heterologous promoters in the context of a late-generation lentiviral vector. The interference, involving the human cytomegalovirus-immediate-early promoter and human elongation-factor-1α promoter, occurred bidirectionally with both promoters markedly impairing expression of the adjacent transcription unit. The data presented not only highlight the potential for interference between these widely-used promoters, but also the value of a sequential approach to vector construction that allows such effects to be recognized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Gao H, Xiao J, Sun Q, Lin H, Bai Y, Yang L et al. A single decoy oligodeoxynucleotides targeting multiple oncoproteins produces strong anticancer effects. Mol Pharmacol 2006; 70: 1621–1629.

    Article  CAS  PubMed  Google Scholar 

  2. Zhong S, Liu C, Haviland D, Doris PA, Teng BB . Simultaneous expression of apolipoprotein B mRNA editing enzyme and scavenger receptor BI mediated by a therapeutic gene expression system. Atherosclerosis 2006; 184: 264–275.

    Article  CAS  PubMed  Google Scholar 

  3. Wang HJ, Yu CL, Kishi H, Motoki K, Mao ZB, Muraguchi A . Suppression of experimental osteoarthritis by adenovirus-mediated double gene transfer. Chin Med J (Engl) 2006; 119: 1365–1373.

    Article  CAS  Google Scholar 

  4. Ghattas IR, Sanes JR, Majors JE . The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol Cell Biol 1991; 11: 5848–5859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Felipe P . Polycistronic viral vectors. Curr Gene Ther 2002; 2: 355–378.

    Article  CAS  PubMed  Google Scholar 

  6. Ngoi SM, Chien AC, Lee CG . Exploiting internal ribosome entry sites in gene therapy vector design. Curr Gene Ther 2004; 4: 15–31.

    Article  CAS  PubMed  Google Scholar 

  7. De Felipe P, Izquierdo M . Construction and characterization of pentacistronic retrovirus vectors. J Gen Virol 2003; 84: 1281–1285.

    Article  CAS  Google Scholar 

  8. Allera-Moreau C, Chomarat P, Audinot V, Coge F, Gillard M, Martineau Y et al. The use of IRES-based bicistronic vectors allows the stable expression of recombinant G-protein coupled receptors such as NPY5 and histamine 4. Biochimie 2006; 88: 737–746.

    Article  CAS  PubMed  Google Scholar 

  9. Mizuguchi H, Xu Z, Ishii-Watabe A, Uchida E, Hayakawa T . IRES-dependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector. Mol Ther 2000; 1: 376–382.

    Article  CAS  PubMed  Google Scholar 

  10. Berberich SL, Stoltzfus CM . Mutations in the regions of the Rous sarcoma virus 3′ splice sites: implications for regulation of alternative splicing. J Virol 1991; 65: 2640–2646.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Germann UA, Chin KV, Pastan I, Gottesman MM . Retroviral transfer of a chimeric multidrug resistance-adenosine deaminase gene. FASEB J 1990; 4: 1501–1507.

    Article  CAS  PubMed  Google Scholar 

  12. Ryan MD, Drew J . Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J 1994; 13: 928–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furler S, Paterna JC, Weibel M, Bueler H . Recombinant AAV vectors containing the foot and mouth disease virus 2A sequence confer efficient bicistronic gene expression in cultured cells and rat substantia nigra neurons. Gene Ther 2001; 8: 864–873.

    Article  CAS  PubMed  Google Scholar 

  14. Eszterhas SK, Bouhassira EE, Martin DI, Fiering S . Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Mol Cell Biol 2002; 22: 469–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cullen BR, Lomedico PT, Ju G . Transcriptional interference in avian retroviruses—implications for the promoter insertion model of leukaemogenesis. Nature 1984; 307: 241–245.

    Article  CAS  PubMed  Google Scholar 

  16. Emerman M, Temin HM . Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 1984; 39: 449–467.

    Article  CAS  PubMed  Google Scholar 

  17. Emerman M, Temin HM . High-frequency deletion in recovered retrovirus vectors containing exogenous DNA with promoters. J Virol 1984; 50: 42–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hildinger M, Schilz A, Eckert HG, Bohn W, Fehse B, Zander A et al. Bicistronic retroviral vectors for combining myeloprotection with cell-surface marking. Gene Ther 1999; 6: 1222–1230.

    Article  CAS  PubMed  Google Scholar 

  19. Edelstein ML, Abedi MR, Wixon J, Edelstein RM . Gene therapy clinical trials worldwide 1989–2004-an overview. J Gene Med 2004; 6: 597–602.

    Article  PubMed  Google Scholar 

  20. Reiser J, Lai Z, Zhang XY, Brady RO . Development of multigene and regulated lentivirus vectors. J Virol 2000; 74: 10589–10599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  22. Naldini L, Blomer U, Gage FH, Trono D, Verma IM . Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996; 93: 11382–11388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Adam MA, Ramesh N, Miller AD, Osborne WR . Internal initiation of translation in retroviral vectors carrying picornavirus 5′ nontranslated regions. J Virol 1991; 65: 4985–4990.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Monahan PE, Samulski RJ . AAV vectors: is clinical success on the horizon? Gene Ther 2000; 7: 24–30.

    Article  CAS  PubMed  Google Scholar 

  25. Wu X, Li Y, Crise B, Burgess SM . Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749–1751.

    Article  CAS  PubMed  Google Scholar 

  26. Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2004; 2: E234.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hematti P, Hong BK, Ferguson C, Adler R, Hanawa H, Sellers S et al. Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol 2004; 2: e423.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yu X, Zhan X, D’Costa J, Tanavde VM, Ye Z, Peng T et al. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells. Mol Ther 2003; 7: 827–838.

    Article  CAS  PubMed  Google Scholar 

  29. Ben Dor I, Itsykson P, Goldenberg D, Galun E, Reubinoff BE . Lentiviral vectors harboring a dual-gene system allow high and homogeneous transgene expression in selected polyclonal human embryonic stem cells. Mol Ther 2006; 14: 255–267.

    Article  CAS  PubMed  Google Scholar 

  30. Ginn SL, Fleming J, Rowe PB, Alexander IE . Promoter interference mediated by the U3 region in early-generation HIV-1-derived lentivirus vectors can influence detection of transgene expression in a cell-type and species-specific manner. Hum Gene Ther 2003; 14: 1127–1137.

    Article  CAS  PubMed  Google Scholar 

  31. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–9880.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Greger IH, Demarchi F, Giacca M, Proudfoot NJ . Transcriptional interference perturbs the binding of Sp1 to the HIV-1 promoter. Nucleic Acids Res 1998; 26: 1294–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Isomura H, Stinski MF, Kudoh A, Daikoku T, Shirata N, Tsurumi T . Two Sp1/Sp3 binding sites in the major immediate-early proximal enhancer of human cytomegalovirus have a significant role in viral replication. J Virol 2005; 79: 9597–9607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Uetsuki T, Naito A, Nagata S, Kaziro Y . Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-1 alpha. J Biol Chem 1989; 264: 5791–5798.

    CAS  PubMed  Google Scholar 

  35. Tolmachov O, Ma YL, Themis M, Patel P, Spohr H, MacLeod KT et al. Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro. BMC Cardiovasc Disord 2006; 6: 25.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gaszner M, Felsenfeld G . Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 2006; 7: 703–713.

    Article  CAS  PubMed  Google Scholar 

  37. Kuhn EJ, Geyer PK . Genomic insulators: connecting properties to mechanism. Curr Opin Cell Biol 2003; 15: 259–265.

    Article  CAS  PubMed  Google Scholar 

  38. Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L . Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 2000; 25: 217–222.

    Article  CAS  PubMed  Google Scholar 

  39. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36: 59–74.

    Article  CAS  PubMed  Google Scholar 

  40. Sastry L, Johnson T, Hobson MJ, Smucker B, Cornetta K . Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther 2002; 9: 1155–1162.

    Article  CAS  PubMed  Google Scholar 

  41. Smyth CM, Ginn SL, Deakin CT, Logan GJ, Alexander IE . Limiting γc expression differentially affects signaling via the interleukin (IL)-7 and IL-15 receptors. Blood 2007; 110: 91–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Inder Verma (Salk Institute, San Diego, USA) for providing the lentiviral vector reagents used in this study. This work was supported by an ASTRA fellowship from the Royal Australasian Collage of Physicians and by the Haemophilia Foundation of Australia. Julie A Curtin was the recipient of a NHMRC post-graduate research scholarship and a CHW New Investigator Grant. We also thank ACCO Australia, for funding support. Samantha L Ginn is the recipient of a fellowship honouring the memory of Noel Dowling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I E Alexander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtin, J., Dane, A., Swanson, A. et al. Bidirectional promoter interference between two widely used internal heterologous promoters in a late-generation lentiviral construct. Gene Ther 15, 384–390 (2008). https://doi.org/10.1038/sj.gt.3303105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303105

Keywords

This article is cited by

Search

Quick links