Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

OuaSelect, a novel ouabain-resistant human marker gene that allows efficient cell selection within 48 h

Abstract

Efficient selection of gene-modified cells is required for a number of potential gene therapy applications, as well as molecular biology studies. Ideally, a clinical selection regimen would combine high selection speed, efficiency and efficacy, in addition to clinical grade selection techniques and low immunogenicity. To our knowledge, a selection marker satisfying all these features is so far not available. Ouabain is a clinically used cardiac glycoside and selective Na+/K+-ATPase inhibitor. On the basis of the high sensitivity of human Na+/K+-ATPase proteins to ouabain, and rapid killing of cells upon exposure, we have screened the ubiquitously expressed Na+/K+-ATPase α1 subunit for mutations that could greatly increase its resistance to ouabain. Two amino-acid substitutions, Q118R and N129D were sufficient to confer a two log greater resistance to ouabain in HeLa, Jurkat, U2OS cells and in primary cells. Furthermore, following transduction of primary lymphocytes with the α1Q118R/N129D gene, >99% pure populations of gene-modified cells were achieved with a recovery rate of >80% after 48 h of exposure to ouabain. These results identify the human α1Q118R/N129D (OuaSelect) as a promising selection marker gene for safe, rapid and cost-effective selection in clinical gene therapy and molecular biology research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Verma IM, Somia N . Gene therapy—promises, problems and prospects. Nature 1997; 389: 239–242.

    Article  CAS  PubMed  Google Scholar 

  2. Sauce D, Tonnelier N, Duperrier A, Petracca B, de Carvalho Bittencourt M, Saadi M et al. Influence of ex vivo expansion and retrovirus-mediated gene transfer on primary T lymphocyte phenotype and functions. J Hematother Stem Cell Res 2002; 11: 929–940.

    Article  CAS  PubMed  Google Scholar 

  3. Ferrand C, Robinet E, Contassot E, Certoux JM, Lim A, Herve P et al. Retrovirus-mediated gene transfer in primary T lymphocytes: influence of the transduction/selection process and of ex vivo expansion on the T cell receptor beta chain hypervariable region repertoire. Hum Gene Ther 2000; 11: 1151–1164.

    Article  CAS  PubMed  Google Scholar 

  4. Weijtens M, van Spronsen A, Hagenbeek A, Braakman E, Martens A . Reduced graft-versus-host disease-inducing capacity of T cells after activation, culturing, and magnetic cell sorting selection in an allogeneic bone marrow transplantation model in rats. Hum Gene Ther 2002; 13: 187–198.

    Article  CAS  PubMed  Google Scholar 

  5. Contassot E, Murphy W, Angonin R, Pavy JJ, Bittencourt MC, Robinet E et al. In vivo alloreactive potential of ex vivo-expanded primary T lymphocytes. Transplantation 1998; 65: 1365–1370.

    Article  CAS  PubMed  Google Scholar 

  6. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997; 276: 1719–1724.

    Article  CAS  PubMed  Google Scholar 

  7. Verzeletti S, Bonini C, Marktel S, Nobili N, Ciceri F, Traversari C et al. Herpes simplex virus thymidine kinase gene transfer for controlled graft-versus-host disease and graft-versus-leukemia: clinical follow-up and improved new vectors. Hum Gene Ther 1998; 9: 2243–2251.

    Article  CAS  PubMed  Google Scholar 

  8. Sauce D, Bodinier M, Garin M, Petracca B, Tonnelier N, Duperrier A et al. Retrovirus-mediated gene transfer in primary T lymphocytes impairs their anti-Epstein–Barr virus potential through both culture-dependent and selection process-dependent mechanisms. Blood 2002; 99: 1165–1173.

    Article  CAS  PubMed  Google Scholar 

  9. Sorrentino BP, Brandt SJ, Bodine D, Gottesman M, Pastan I, Cline A et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 1992; 257: 99–103.

    Article  CAS  PubMed  Google Scholar 

  10. Machiels JP, Govaerts AS, Guillaume T, Bayat B, Feyens AM, Lenoir E et al. Retrovirus-mediated gene transfer of the human multidrug resistance-associated protein into hematopoietic cells protects mice from chemotherapy-induced leukopenia. Hum Gene Ther 1999; 10: 801–811.

    Article  CAS  PubMed  Google Scholar 

  11. Eliopoulos N, Al-Khaldi A, Beausejour CM, Momparler RL, Momparler LF, Galipeau J . Human cytidine deaminase as an ex vivo drug selectable marker in gene-modified primary bone marrow stromal cells. Gene Therapy 2002; 9: 452–462.

    Article  CAS  PubMed  Google Scholar 

  12. Mavilio F, Ferrari G, Rossini S, Nobili N, Bonini C, Casorati G et al. Peripheral blood lymphocytes as target cells of retroviral vector-mediated gene transfer. Blood 1994; 83: 1988–1997.

    CAS  PubMed  Google Scholar 

  13. Deola S, Scaramuzza S, Birolo RS, Carballido-Perrig N, Ficara F, Mocchetti C et al. Mobilized blood CD34+ cells transduced and selected with a clinically applicable protocol reconstitute lymphopoiesis in SCID-Hu mice. Hum Gene Ther 2004; 15: 305–311.

    Article  CAS  PubMed  Google Scholar 

  14. Hedfors IA, Beckstrom KJ, Benati C, Bonini C, Brinchmann JE . Retrovirus mediated gene transduction of human T-cell subsets. Cancer Immunol Immunother 2005; 54: 759–768.

    Article  PubMed  Google Scholar 

  15. Fehse B, Richters A, Putimtseva-Scharf K, Klump H, Li Z, Ostertag W et al. CD34 splice variant: an attractive marker for selection of gene-modified cells. Mol Ther 2000; 1 (5 Part 1): 448–456.

    Article  CAS  PubMed  Google Scholar 

  16. Lemoine FM, Mesel-Lemoine M, Cherai M, Gallot G, Vie H, Leclercq V et al. Efficient transduction and selection of human T-lymphocytes with bicistronic Thy1/HSV1-TK retroviral vector produced by a human packaging cell line. J Gene Med 2004; 6: 374–386.

    Article  CAS  PubMed  Google Scholar 

  17. Introna M, Barbui AM, Bambacioni F, Casati C, Gaipa G, Borleri G et al. Genetic modification of human T cells with CD20: a strategy to purify and lyse transduced cells with anti-CD20 antibodies. Hum Gene Ther 2000; 11: 611–620.

    Article  CAS  PubMed  Google Scholar 

  18. Baum C, Dullmann J, Li Z, Fehse B, Meyer J, Williams DA et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101: 2099–2114.

    Article  CAS  PubMed  Google Scholar 

  19. Robinet E, Fehse B, Ebeling S, Sauce D, Ferrand C, Tiberghien P . Improving the ex vivo retroviral-mediated suicide-gene transfer process in T lymphocytes to preserve immune function. Cytotherapy 2005; 7: 150–157.

    Article  CAS  PubMed  Google Scholar 

  20. Smith TW . The basic mechanism of inotropic action of digitalis glycosides. J Pharmacol 1984; 15 (Suppl 1): 35–51.

    CAS  PubMed  Google Scholar 

  21. McDonough AA, Velotta JB, Schwinger RH, Philipson KD, Farley RA . The cardiac sodium pump: structure and function. Basic Res Cardiol 2002; 97 (Suppl 1): I19–I24.

    PubMed  Google Scholar 

  22. Aints A, Belusa R, Andersson RM, Guven H, Dilber MS . Enhanced ouabain resistance gene as a eukaryotic selection marker. Hum Gene Ther 2002; 13: 969–977.

    Article  CAS  PubMed  Google Scholar 

  23. Belusa R, Aizman O, Andersson RM, Aperia A . Changes in Na(+)-K(+)-ATPase activity influence cell attachment to fibronectin. Am J Physiol Cell Physiol 2002; 282: C302–C309.

    Article  CAS  PubMed  Google Scholar 

  24. Geering K . The functional role of beta subunits in oligomeric P-type ATPases. J Bioenerg Biomembr 2001; 33: 425–438.

    Article  CAS  PubMed  Google Scholar 

  25. Jaunin P, Horisberger JD, Richter K, Good PJ, Rossier BC, Geering K . Processing, intracellular transport, and functional expression of endogenous and exogenous alpha-beta 3 Na,K-ATPase complexes in Xenopus oocytes. J Biol Chem 1992; 267: 577–585.

    CAS  PubMed  Google Scholar 

  26. Brummelkamp TR, Bernards R, Agami R . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

  27. Arteaga HJ, Hinkula J, van Dijk-Hard I, Dilber MS, Wahren B, Christensson B et al. Choosing CCR5 or Rev siRNA in HIV-1. Nat Biotechnol 2003; 21: 230–231.

    Article  CAS  PubMed  Google Scholar 

  28. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ciceri F, Bonini C, Marktel S, Zappone E, Servida P, Bernardi M et al. Antitumor effects of HSV-TK-engineered donor lymphocytes after allogeneic stem-cell transplantation. Blood 2007; 109: 4698–4707.

    Article  CAS  PubMed  Google Scholar 

  30. Xiao AY, Wei L, Xia S, Rothman S, Yu SP . Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 2002; 22: 1350–1362.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Introna M, Rambaldi A . Suicide gene therapy and the control of graft-vs-host disease. Best Pract Res Clin Haematol 2004; 17: 453–463.

    Article  CAS  PubMed  Google Scholar 

  32. Fehse B, Kustikova OS, Li Z, Wahlers A, Bohn W, Beyer WR et al. A novel ‘sort-suicide’ fusion gene vector for T cell manipulation. Gene Therapy 2002; 9: 1633–1638.

    Article  CAS  PubMed  Google Scholar 

  33. Carlens S, Gilljam M, Remberger M, Aschan J, Christensson B, Dilber MS . Ex vivo T lymphocyte expansion for retroviral transduction: influence of serum-free media on variations in cell expansion rates and lymphocyte subset distribution. Exp Hematol 2000; 28: 1137–1146.

    Article  CAS  PubMed  Google Scholar 

  34. Hildinger M, Eckert HG, Schilz AJ, John J, Ostertag W, Baum C . FMEV vectors: both retroviral long terminal repeat and leader are important for high expression in transduced hematopoietic cells. Gene Therapy 1998; 5: 1575–1579.

    Article  CAS  PubMed  Google Scholar 

  35. Movassagh M, Boyer O, Burland MC, Leclercq V, Klatzmann D, Lemoine FM . Retrovirus-mediated gene transfer into T cells: 95% transduction efficiency without further in vitro selection. Hum Gene Ther 2000; 11: 1189–1200.

    Article  CAS  PubMed  Google Scholar 

  36. Chu YW, Wang R, Schmid I, Sakamoto KM . Analysis with flow cytometry of green fluorescent protein expression in leukemic cells. Cytometry 1999; 36: 333–339.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Birger Christensson (Centre for Cell analysis at Karolinska University Hospital Huddinge) for help with confocal images, CI Edvard Smith for editorial assistance, and Hernan Concha and Abdalla M Jama, for their technical assistance. This work was supported by grants from (1) EU Commission (QLK3-CT-2001-01265), (2) Petrus och Augusta Hedlunds Stiftelse and (3) The Swedish Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Dilber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treschow, A., Unger, C., Aints, A. et al. OuaSelect, a novel ouabain-resistant human marker gene that allows efficient cell selection within 48 h. Gene Ther 14, 1564–1572 (2007). https://doi.org/10.1038/sj.gt.3303015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303015

Keywords

Search

Quick links