Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In vivo expression of GLP-1/IgG-Fc fusion protein enhances beta-cell mass and protects against streptozotocin-induced diabetes

Abstract

Glucagon-like peptide 1 (GLP-1) and its analogue exendin-4 (Ex4) have displayed potent glucose homeostasis-modulating characteristics in type 2 diabetes (T2D). However, there are few reports of effectiveness in type 1 diabetes (T1D) therapy, where there is massive loss of β cells. We previously described a novel GLP-1 analogue consisting of the fusion of active GLP-1 and IgG heavy chain constant regions (GLP-1/IgG-Fc), and showed that in vivo expression of the protein, via electroporation-enhanced intramuscular plasmid-based gene transfer, normalized blood glucose levels in T2D-prone db/db mice. In the present study, GLP-1/IgG-Fc and Ex4/IgG-Fc were independently tested in multiple low-dose streptozotocin-induced T1D. Both GLP-1/IgG-Fc and Ex4/IgG-Fc effectively reduced fed blood glucose levels in treated mice and ameliorated diabetes symptoms, where as control IgG-Fc had no effect. Treatment with GLP-1/IgG-Fc or Ex4/IgG-Fc improved glucose tolerance and increased circulating insulin and GLP-1 levels. It also significantly enhanced islet beta-cell mass, which is likely a major factor in the amelioration of diabetes. This suggests that GLP-1/IgG-Fc gene therapy may be applicable to diseases where there is either acute or chronic beta-cell injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bonner-Weir S . Life and death of the pancreatic beta cells. Trends Endocrinol Metab (2000); 11: 375–378.

    Article  CAS  PubMed  Google Scholar 

  2. Juneja R, Palmer JP . Type 1 1/2 diabetes: myth or reality? Autoimmunity (1999); 29: 65–83.

    Article  CAS  PubMed  Google Scholar 

  3. Goudy KS, Tisch R . Immunotherapy for the prevention and treatment of type 1 diabetes. Int Rev Immunol 2005; 24: 307–326.

    Article  CAS  PubMed  Google Scholar 

  4. Mathis D, Vence L, Benoist C . beta-Cell death during progression to diabetes. Nature 2001; 414: 792–798.

    Article  CAS  PubMed  Google Scholar 

  5. Kahn SE . The importance of the beta-cell in the pathogenesis of type 2 diabetes mellitus. Am J Med 2000; 108 (Suppl 6a): 2S–8S.

    Article  CAS  PubMed  Google Scholar 

  6. Dickson LM, Rhodes CJ . Pancreatic beta-cell growth and survival in the onset of type 2 diabetes: a role for protein kinase B in the Akt? Am J Physiol Endocrinol Metab 2004; 287: E192–E198.

    Article  CAS  PubMed  Google Scholar 

  7. Drucker DJ . Glucagon-like peptides. Diabetes 1998; 47: 159–169.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Q, Brubaker PL . Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia 2002; 45: 1263–1273.

    Article  CAS  PubMed  Google Scholar 

  9. Tourrel C, Bailbe D, Lacorne M, Meile MJ, Kergoat M, Portha B . Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes 2002; 51: 1443–1452.

    Article  CAS  PubMed  Google Scholar 

  10. Ogawa N, List JF, Habener JF, Maki T . Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 2004; 53: 1700–1705.

    Article  CAS  PubMed  Google Scholar 

  11. Tourrel C, Bailbe D, Meile MJ, Kergoat M, Portha B . Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 2001; 50: 1562–1570.

    Article  CAS  PubMed  Google Scholar 

  12. Meier JJ, Nauck MA . Glucagon-like peptide 1(GLP-1) in biology and pathology. Diabetes Metab Res Rev 2005; 21: 91–117.

    Article  CAS  PubMed  Google Scholar 

  13. Holst JJ, Gromada J . Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab 2004; 287: E199–E206.

    Article  CAS  PubMed  Google Scholar 

  14. Brubaker PL, Drucker DJ . Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Receptors Channels 2002; 8: 179–188.

    Article  CAS  PubMed  Google Scholar 

  15. Holz GG . New insights concerning the glucose-dependent insulin secretagogue action of glucagon-like peptide-1 in pancreatic beta-cells. Horm Metab Res 2004; 36: 787–794.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Thorens B . Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci USA 1992; 89: 8641–8645.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Wang Q, Li L, Xu E, Wong V, Rhodes C, Brubaker PL . Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 beta cells. Diabetologia 2004; 47: 478–487.

    Article  CAS  PubMed  Google Scholar 

  18. Wrede CE, Dickson LM, Lingohr MK, Briaud I, Rhodes CJ . Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1). J Biol Chem 2002; 277: 49676–49684.

    Article  CAS  PubMed  Google Scholar 

  19. Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL et al. Epac-selective cAMP analog 8-pCPT-2′-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells. J Biol Chem 2003; 278: 8279–8285.

    Article  CAS  PubMed  Google Scholar 

  20. Kashima Y, Miki T, Shibasaki T, Ozaki N, Miyazaki M, Yano H et al. Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 2001; 276: 46046–46053.

    Article  CAS  PubMed  Google Scholar 

  21. Irwin DM, Irwin DM, Satkunarajah M, Wen Y, Brubaker PL, Pederson RA et al. The Xenopus proglucagon gene encodes novel GLP-1-like peptides with insulinotropic properties. Proc Natl Acad Sci USA 1997; 94: 7915–7920.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Nauck MA . Glucagon-like peptide 1 (GLP-1) in the treatment of diabetes. Horm Metab Res 2004; 36: 852–858.

    Article  CAS  PubMed  Google Scholar 

  23. Gutniak MK, Linde B, Holst JJ, Efendic S . Subcutaneous injection of the incretin hormone glucagon-like peptide 1 abolishes postprandial glycemia in NIDDM. Diabetes Care 1994; 17: 1039–1044.

    Article  CAS  PubMed  Google Scholar 

  24. Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF . Insulinotropic action of glucagonlike peptide-I-(7–37) in diabetic and nondiabetic subjects. Diabetes Care 1992; 15: 270–276.

    Article  CAS  PubMed  Google Scholar 

  25. Todd JF, Wilding JP, Edwards CM, Khan FA, Ghatei MA, Bloom SR . Glucagon-like peptide-1 (GLP-1): a trial of treatment in non-insulin-dependent diabetes mellitus. Eur J Clin Invest 1997; 27: 533–536.

    Article  CAS  PubMed  Google Scholar 

  26. Kieffer TJ, McIntosh CH, Pederson RA . Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 1995; 136: 3585–3596.

    Article  CAS  PubMed  Google Scholar 

  27. Mentlein R, Gallwitz B, Schmidt WE . Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993; 214: 829–835.

    Article  CAS  PubMed  Google Scholar 

  28. Ritzel R, Schulte M, Porksen N, Nauck MS, Holst JJ, Juhl C et al. Glucagon-like peptide 1 increases secretory burst mass of pulsatile insulin secretion in patients with type 2 diabetes and impaired glucose tolerance. Diabetes 2001; 50: 776–784.

    Article  CAS  PubMed  Google Scholar 

  29. Toft-Nielsen MB, Madsbad S, Holst JJ . Continuous subcutaneous infusion of glucagon-like peptide 1 lowers plasma glucose and reduces appetite in type 2 diabetic patients. Diabetes Care 1999; 22: 1137–1143.

    Article  CAS  PubMed  Google Scholar 

  30. Ahren B, Schmitz O . GLP-1 receptor agonists and DPP-4 inhibitors in the treatment of type 2 diabetes. Horm Metab Res 2004; 36: 867–876.

    Article  CAS  PubMed  Google Scholar 

  31. Green BD, Gault VA, O'harte FP, Flatt PR . Structurally modified analogues of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) as future antidiabetic agents. Curr Pharm Des 2004; 10: 3651–3662.

    Article  CAS  PubMed  Google Scholar 

  32. Chang AM, Chang AM, Jakobsen G, Sturis J, Smith MJ, Bloem CJ et al. The GLP-1 derivative NN2211 restores beta-cell sensitivity to glucose in type 2 diabetic patients after a single dose. Diabetes 2003; 52: 1786–1791.

    Article  CAS  PubMed  Google Scholar 

  33. Kim JG, Baggio LL, Bridon DP, Castaigne JP, Robitaille MF, Jette L et al. Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes 2003; 52: 751–759.

    Article  CAS  PubMed  Google Scholar 

  34. Liu HK, Green BD, Gault VA, McCluskey JT, McClenaghan NH, O'Harte FP et al. N-acetyl-GLP-1: a DPP IV-resistant analogue of glucagon-like peptide-1 (GLP-1) with improved effects on pancreatic beta-cell-associated gene expression. Cell Biol Int 2004; 28: 69–73.

    Article  CAS  PubMed  Google Scholar 

  35. Kumar M, Hunag Y, Glinka Y, Prud'homme GJ, Wang Q . Gene therapy of diabetes using a novel GLP-1/IgG1-Fc fusion construct normalizes glucose levels in db/db mice. Gene Therapy 2006; 122: 162–172.

    Google Scholar 

  36. Drucker DJ . Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 2002; 122: 531–544.

    Article  CAS  PubMed  Google Scholar 

  37. Siminerio L . Challenges and strategies for moving patients to injectable medications. Diabetes Educ 2006; 32 (Suppl 2): 82S–90S.

    Article  PubMed  Google Scholar 

  38. Baggio LL, Holland D, Wither J, Drucker DJ . Lymphocytic infiltration and immune activation in metallothionein promoter-Exendin-4 (MT-Exendin) transgenic mice. Diabetes 2006; 55: 1562–1570.

    Article  CAS  PubMed  Google Scholar 

  39. Reimold AM . TNFalpha as therapeutic target: new drugs, more applications. Curr Drug Targets Inflamm Allergy 2002; 1: 377–392.

    Article  CAS  PubMed  Google Scholar 

  40. Weir AN, Nesbitt A, Chapman AP, Popplewell AG, Antoniw P, Lawson AD . Formatting antibody fragments to mediate specific therapeutic functions. Biochem Soc Trans 2002; 30: 512–516.

    Article  CAS  PubMed  Google Scholar 

  41. Dupuis DS, Perez M, Halazy S, Colpaert FC, Pauwels PJ . Magnitude of 5-HT1B and 5-HT1A receptor activation in guinea-pig and rat brain: evidence from sumatriptan dimer-mediated [35S]GTPgammaS binding responses. Brain Res Mol Brain Res 1999; 67: 107–123.

    Article  CAS  PubMed  Google Scholar 

  42. George SR, O'Dowd BF, Lee SP . G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 2002; 1: 808–820.

    Article  CAS  PubMed  Google Scholar 

  43. Larrick JW, Fry KE . Recombinant antibodies. Hum Antibodies Hybridomas 1991; 2: 172–189.

    Article  CAS  PubMed  Google Scholar 

  44. Fountoulakis M, Mesa C, Schmid G, Gentz R, Manneberg M, Zulauf M et al. Interferon gamma receptor extracellular domain expressed as IgG fusion protein in Chinese hamster ovary cells. Purification, biochemical characterization, and stoichiometry of binding. J Biol Chem 1995; 270: 3958–3964.

    Article  CAS  PubMed  Google Scholar 

  45. King LB, Monroe JG . Immunobiology of the immature B cell: plasticity in the B-cell antigen receptor-induced response fine tunes negative selection. Immunol Rev 2000; 176: 86–104.

    Article  CAS  PubMed  Google Scholar 

  46. Prud'homme GJ . Altering immune tolerance therapeutically: the power of negative thinking. J Leukoc Biol 2004; 75: 586–599.

    Article  CAS  PubMed  Google Scholar 

  47. Sun N, Yang G, Zhao H, Savelkoul HF, An L . Multidose streptozotocin induction of diabetes in BALB/c mice induces a dominant oxidative macrophage and a conversion of TH1 to TH2 phenotypes during disease progression. Mediators Inflamm 2005; 2005: 202–209.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Lukic ML, Stosic-Grujicic S, Shahin A . Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev Immunol 1998; 6: 119–128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Muller A, Schott-Ohly P, Dohle C, Gleichmann H . Differential regulation of Th1-type and Th2-type cytokine profiles in pancreatic islets of C57BL/6 and BALB/c mice by multiple low doses of streptozotocin. Immunobiology 2002; 205: 35–50.

    Article  CAS  PubMed  Google Scholar 

  50. Herold KC, Vezys V, Sun Q, Viktora D, Seung E, Reiner S et al. Regulation of cytokine production during development of autoimmune diabetes induced with multiple low doses of streptozotocin. J Immunol 1996; 156: 3521–3527.

    CAS  PubMed  Google Scholar 

  51. Prud'homme GJ, Chang Y . Prevention of autoimmune diabetes by intramuscular gene therapy with a nonviral vector encoding an interferon-gamma receptor/IgG1 fusion protein. Gene Therapy 1999; 6: 771–777.

    Article  CAS  PubMed  Google Scholar 

  52. Anderson MS, Bluestone JA . The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 2005; 23: 447–485.

    Article  CAS  PubMed  Google Scholar 

  53. Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 2005; 352: 2598–2608.

    Article  CAS  PubMed  Google Scholar 

  54. Hartikka J, Sawdey M, Cornefert-Jensen F, Margalith M, Barnhart K, Nolasco M et al. An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum Gene Ther 1996; 7: 1205–1217.

    Article  CAS  PubMed  Google Scholar 

  55. Croze F, Prud'homme GJ . Gene therapy of streptozotocin-induced diabetes by intramuscular delivery of modified preproinsulin genes. J Gene Med 2003; 5: 425–437.

    Article  CAS  PubMed  Google Scholar 

  56. Scrogin KE, Hatton DC, Chi Y, Luft FC . Chronic nitric oxide inhibition with L-NAME: effects on autonomic control of the cardiovascular system. Am J Physiol 1998; 274: R367–R374.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Institute for Health Research (to Q Wang) and the Juvenile Diabetes Research Foundation (PI: Q Wang; Co-PI: G Prud'homme) and the Krembil Foundation (Toronto, Canada; Co-PI: G Prud'homme). Q Wang is a recipient of a Canadian Diabetes Association Scholarship. M Kumar was a recipient of the Canadian Diabetes Association Fellowship. N Soltani was partially supported by an Overseas Scholarship of Hormozgan Medical Science University from Iranian Health Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltani, N., Kumar, M., Glinka, Y. et al. In vivo expression of GLP-1/IgG-Fc fusion protein enhances beta-cell mass and protects against streptozotocin-induced diabetes. Gene Ther 14, 981–988 (2007). https://doi.org/10.1038/sj.gt.3302944

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302944

Keywords

This article is cited by

Search

Quick links