Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Toll-like receptor 7 and MyD88 knockdown by lentivirus-mediated RNA interference to porcine dendritic cell subsets

Abstract

Sensing of viruses by dendritic cell (DC) pathogen recognition receptors (PRRs) represents a critical event during innate antiviral immune responses. Identification of these PRRs has often posed a problem due to difficulties in performing gene function studies in the naturally targeted hosts. Consequently, we developed a lentivirus (LV)-based strategy for specific gene knockdown in porcine DC. Short hairpin RNAs (shRNAs) were designed, targeting toll-like receptor 7 (TLR7) and the adaptor protein MyD88. As cellular targets, monocyte-derived DC (MoDC) and Flt3 ligand-induced DC (Flt3L-DC), DC precursors including monocytes and haematopoietic stem cells (HSCs) as well as plasmacytoid DCs (pDCs) were employed. Transduction efficiencies ranged from 40 to 95%. The LV-mediated shRNA delivery was functionally active, reducing TLR7 and MyD88 mRNA in MoDC and conventional Flt3L-DC, and blunting the responsiveness to TLR7 ligands in Flt3L-DC. Although infection of MoDC by the LV did neither influence MHC class II and CD80/86 expressions, nor cytokine responses, the infection of Flt3L-DC induced a phenotypic maturation. Furthermore, the interaction of the LV with pDC induced high levels of interferon-α. Taken together, these studies characterize the interaction of the LV with different DC subsets and demonstrate the suitability of LV-mediated small interfering RNA delivery for targeting PRR knockout for MoDC and conventional Flt3L-DC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kawai T, Akira S . TLR signaling. Cell Death Differ 2006; 13: 816–825.

    Article  CAS  Google Scholar 

  2. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  Google Scholar 

  3. Liu YJ . IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 2005; 23: 275–306.

    Article  CAS  Google Scholar 

  4. Adah SA, Bayly SF, Cramer H, Silverman RH, Torrence PF . Chemistry and biochemistry of 2′,5′-oligoadenylate-based antisense strategy 1551. Curr Med Chem 2001; 8: 1189–1212.

    Article  CAS  Google Scholar 

  5. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5: 730–737.

    Article  CAS  Google Scholar 

  6. Sumpter Jr R, Loo YM, Foy E, Li K, Yoneyama M, Fujita T et al. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 2005; 79: 2689–2699.

    Article  CAS  Google Scholar 

  7. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA . Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3 1750. Nature 2001; 413: 732–738.

    Article  CAS  Google Scholar 

  8. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C . Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303: 1529–1531.

    Article  CAS  Google Scholar 

  9. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303: 1526–1529.

    Article  CAS  Google Scholar 

  10. Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A . Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 2003; 198: 513–520.

    Article  CAS  Google Scholar 

  11. Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M . Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 2004; 103: 1433–1437.

    Article  CAS  Google Scholar 

  12. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740–745.

    Article  CAS  Google Scholar 

  13. Bauer S, Kirschning CJ, Hacker H, Redecke V, Hausmann S, Akira S et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 2001; 98: 9237–9242.

    Article  CAS  Google Scholar 

  14. Barton GM, Kagan JC, Medzhitov R . Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 2006; 7: 49–56.

    Article  CAS  Google Scholar 

  15. Takeuchi O, Akira S . MyD88 as a bottle neck in Toll/IL-1 signaling. Curr Top Microbiol Immunol 2002; 270: 155–167.

    CAS  PubMed  Google Scholar 

  16. Liew FY, Xu D, Brint EK, O'Neill LA . Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol 2005; 5: 446–458.

    Article  CAS  Google Scholar 

  17. Hoebe K, Janssen EM, Kim SO, Alexopoulou L, Flavell RA, Han J et al. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat Immunol 2003; 4: 1223–1229.

    Article  CAS  Google Scholar 

  18. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 2002; 169: 6668–6672.

    Article  CAS  Google Scholar 

  19. Horng T, Barton GM, Flavell RA, Medzhitov R . The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 2002; 420: 329–333.

    Article  CAS  Google Scholar 

  20. Hochrein H, O'Keeffe M, Wagner H . Human and mouse plasmacytoid dendritic cells. Hum Immunol 2002; 63: 1103–1110.

    Article  CAS  Google Scholar 

  21. Guzylack-Piriou L, Balmelli C, McCullough KC, Summerfield A . Type-A CpG oligonucleotides activate exclusively porcine natural interferon-producing cells to secrete interferon-alpha, tumour necrosis factor-alpha and interleukin-12. Immunology 2004; 112: 28–37.

    Article  CAS  Google Scholar 

  22. Hochrein H, Wagner H . Of men, mice and pigs: looking at their plasmacytoid dendritic cells [corrected]. Immunology 2004; 112: 26–27.

    Article  CAS  Google Scholar 

  23. Hammond SM, Bernstein E, Beach D, Hannon GJ . An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404: 293–296.

    Article  CAS  Google Scholar 

  24. Zamore PD, Tuschl T, Sharp PA, Bartel DP . RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21–23 nucleotide intervals. Cell 2000; 101: 25–33.

    Article  CAS  Google Scholar 

  25. Novina CD, Sharp PA . The RNAi revolution. Nature 2004; 430: 161–164.

    Article  CAS  Google Scholar 

  26. Arthur JF, Butterfield LH, Roth MD, Bui LA, Kiertscher SM, Lau R et al. A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther 1997; 4: 17–25.

    CAS  PubMed  Google Scholar 

  27. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  Google Scholar 

  28. Miyoshi H, Smith KA, Mosier DE, Verma IM, Torbett BE . Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 1999; 283: 682–686.

    Article  CAS  Google Scholar 

  29. Summerfield A, Guzylack-Piriou L, Schaub A, Carrasco CP, Tache V, Charley B et al. Porcine peripheral blood dendritic cells and natural interferon-producing cells. Immunology 2003; 110: 440–449.

    Article  CAS  Google Scholar 

  30. Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 2004; 101: 5598–5603.

    Article  CAS  Google Scholar 

  31. Naldini L, Blomer U, Gage FH, Trono D, Verma IM . Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996; 93: 11382–11388.

    Article  CAS  Google Scholar 

  32. Han JJ, Mhatre AN, Wareing M, Pettis R, Gao WQ, Zufferey RN et al. Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector. Hum Gene Ther 1999; 10: 1867–1873.

    Article  CAS  Google Scholar 

  33. Wolfgang MJ, Eisele SG, Browne MA, Schotzko ML, Garthwaite MA, Durning M et al. Rhesus monkey placental transgene expression after lentiviral gene transfer into preimplantation embryos. Proc Natl Acad Sci USA 2001; 98: 10728–10732.

    Article  CAS  Google Scholar 

  34. Ikeda Y, Collins MK, Radcliffe PA, Mitrophanous KA, Takeuchi Y . Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Gene Ther 2002; 9: 932–938.

    Article  CAS  Google Scholar 

  35. Chinnasamy N, Chinnasamy D, Toso JF, Lapointe R, Candotti F, Morgan RA et al. Efficient gene transfer to human peripheral blood monocyte-derived dendritic cells using human immunodeficiency virus type 1-based lentiviral vectors. Hum Gene Ther 2000; 11: 1901–1909.

    Article  CAS  Google Scholar 

  36. Schroers R, Sinha I, Segall H, Schmidt-Wolf IG, Rooney CM, Brenner MK et al. Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mol Ther 2000; 1: 171–179.

    Article  CAS  Google Scholar 

  37. Dyall J, Latouche JB, Schnell S, Sadelain M . Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood 2001; 97: 114–121.

    Article  CAS  Google Scholar 

  38. Gruber A, Kan-Mitchell J, Kuhen KL, Mukai T, Wong-Staal F . Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 2000; 96: 1327–1333.

    CAS  PubMed  Google Scholar 

  39. Dullaers M, Breckpot K, Van Meirvenne S, Bonehill A, Tuyaerts S, Michiels A et al. Side-by-side comparison of lentivirally transduced and mRNA-electroporated dendritic cells: implications for cancer immunotherapy protocols. Mol Ther 2004; 10: 768–779.

    Article  CAS  Google Scholar 

  40. Rouas R, Uch R, Cleuter Y, Jordier F, Bagnis C, Mannoni P et al. Lentiviral-mediated gene delivery in human monocyte-derived dendritic cells: optimized design and procedures for highly efficient transduction compatible with clinical constraints. Cancer Gene Ther 2002; 9: 715–724.

    Article  CAS  Google Scholar 

  41. Van Tendeloo VF, Snoeck HW, Lardon F, Vanham GL, Nijs G, Lenjou M et al. Nonviral transfection of distinct types of human dendritic cells: high-efficiency gene transfer by electroporation into hematopoietic progenitor- but not monocyte-derived dendritic cells. Gene Ther 1998; 5: 700–707.

    Article  CAS  Google Scholar 

  42. Mitchell DA, Nair SK . RNA-transfected dendritic cells in cancer immunotherapy. J Clin Invest 2000; 106: 1065–1069.

    Article  CAS  Google Scholar 

  43. Ponsaerts P, Van Tendeloo VF, Berneman ZN . Cancer immunotherapy using RNA-loaded dendritic cells 2022. Clin Exp Immunol 2003; 134: 378–384.

    Article  CAS  Google Scholar 

  44. Ceppi M, Ruggli N, Tache V, Gerber H, McCullough KC, Summerfield A . Double-stranded secondary structures on mRNA induce type I interferon (IFN alpha/beta) production and maturation of mRNA-transfected monocyte-derived dendritic cells. J Gene Med 2005; 7: 452–465.

    Article  CAS  Google Scholar 

  45. Sioud M . Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 2005; 348: 1079–1090.

    Article  CAS  Google Scholar 

  46. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I . Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005; 23: 457–462.

    Article  CAS  Google Scholar 

  47. Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BR . Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 2003; 5: 834–839.

    Article  CAS  Google Scholar 

  48. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 2005; 11: 263–270.

    Article  CAS  Google Scholar 

  49. Beignon AS, McKenna K, Skoberne M, Manches O, DaSilva I, Kavanagh DG et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J Clin Invest 2005; 115: 3265–3275.

    Article  CAS  Google Scholar 

  50. Del Corno M, Gauzzi MC, Penna G, Belardelli F, Adorini L, Gessani S . Human immunodeficiency virus type 1 gp120 and other activation stimuli are highly effective in triggering alpha interferon and CC chemokine production in circulating plasmacytoid but not myeloid dendritic cells. J Virol 2005; 79: 12597–12601.

    Article  CAS  Google Scholar 

  51. Colonna M, Trinchieri G, Liu YJ . Plasmacytoid dendritic cells in immunity. Nat Immunol 2004; 5: 1219–1226.

    Article  CAS  Google Scholar 

  52. Savarese E, Chae OW, Trowitzsch S, Weber G, Kastner B, Akira S et al. U1 small nuclear ribonucleoprotein immune complexes induce type I interferon in plasmacytoid dendritic cells through TLR7. Blood 2006; 107: 3229–3234.

    Article  CAS  Google Scholar 

  53. Carrasco CP, Rigden RC, Schaffner R, Gerber H, Neuhaus V, Inumaru S et al. Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties 1653. Immunology 2001; 104: 175–184.

    Article  CAS  Google Scholar 

  54. Overton WR . Modified histogram subtraction technique for analysis of flow cytometry data. Cytometry 1988; 9: 619–626.

    Article  CAS  Google Scholar 

  55. Carrasco CP, Rigden RC, Schaffner R, Gerber H, Neuhaus V, Inumaru S et al. Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties. Immunology 2001; 104: 175–184.

    Article  CAS  Google Scholar 

  56. McCullough KC, Schaffner R, Fraefel W, Kihm U . The relative density of CD44-positive porcine monocytic cell populations varies between isolations and upon culture and influences susceptibility to infection by African swine fever virus. Immunol Lett 1993; 37: 83–90.

    Article  CAS  Google Scholar 

  57. Carrasco CP, Rigden RC, Schaffner R, Gerber H, Neuhaus V, Inumaru S et al. Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties. Immunology 2001; 104: 175–184.

    Article  CAS  Google Scholar 

  58. Summerfield A, Horn MP, Lozano G, Carrasco CP, Atze K, McCullough K . C-kit positive porcine bone marrow progenitor cells identified and enriched using recombinant stem cell factor. J Immunol Methods 2003; 280: 113–123.

    Article  CAS  Google Scholar 

  59. Summerfield A, McCullough KC . Porcine bone marrow myeloid cells: phenotype and adhesion molecule expression. J Leukoc Biol 1997; 62: 176–185.

    Article  CAS  Google Scholar 

  60. Wiznerowicz M, Trono D . Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 2003; 77: 8957–8961.

    Article  CAS  Google Scholar 

  61. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D . Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    Article  CAS  Google Scholar 

  62. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss Federal Office for Education and Science (Project 3100-068237/1). We thank Peter Zulliger and Daniel Brechbühl for care of the animals and their regular bleeding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Summerfield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, M., Neuhaus, V., Guzylack-Piriou, L. et al. Toll-like receptor 7 and MyD88 knockdown by lentivirus-mediated RNA interference to porcine dendritic cell subsets. Gene Ther 14, 836–844 (2007). https://doi.org/10.1038/sj.gt.3302930

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302930

Keywords

This article is cited by

Search

Quick links