Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not α-sarcoglycan deficiency

Abstract

Myostatin is a negative regulator of muscle mass whose inhibition has been proposed as a therapeutic strategy for muscle-wasting conditions. Indeed, blocking myostatin action through different strategies has proved beneficial for the pathophysiology of the dystrophin-deficient mdx mouse. In this report, we tested the inhibition of myostatin by AAV-mediated expression of a mutated propeptide in animal models of two limb-girdle muscular dystrophies: LGMD2A caused by mutations in the calpain 3 (CAPN3) gene and LGMD2D caused by mutations in the α-sarcoglycan gene (SGCA). In the highly regenerative Sgca-null mice, survival of the α-sarcoglycan-deficient muscle fibers did not improve after transfer of the myostatin propeptide. In calpain 3-deficient mice, a boost in muscle mass and an increase in absolute force were obtained, suggesting that myostatin inhibition could constitute a therapeutic strategy in this predominantly atrophic disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 1997; 17: 71–74.

    Article  CAS  PubMed Central  Google Scholar 

  2. Kambadur R, Sharma M, Smith TP, Bass JJ . Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 1997; 7: 910–916.

    Article  CAS  PubMed Central  Google Scholar 

  3. McPherron AC, Lee SJ . Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 1997; 94: 12457–12461.

    Article  CAS  PubMed Central  Google Scholar 

  4. Szabo G, Dallmann G, Muller G, Patthy L, Soller M, Varga L . A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm Genome 1998; 9: 671–672.

    Article  CAS  PubMed Central  Google Scholar 

  5. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004; 350: 2682–2688.

    Article  CAS  PubMed Central  Google Scholar 

  6. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 2006; 38: 813–818.

    Article  CAS  PubMed Central  Google Scholar 

  7. McPherron AC, Lawler AM, Lee SJ . Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997; 387: 83–90.

    Article  CAS  PubMed Central  Google Scholar 

  8. Zhu X, Hadhazy M, Wehling M, Tidball JG, McNally EM . Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Lett 2000; 474: 71–75.

    Article  CAS  PubMed Central  Google Scholar 

  9. Yang J, Ratovitski T, Brady JP, Solomon MB, Wells KD, Wall RJ . Expression of myostatin pro domain results in muscular transgenic mice. Mol Reprod Dev 2001; 60: 351–361.

    Article  CAS  PubMed Central  Google Scholar 

  10. Nishi M, Yasue A, Nishimatu S, Nohno T, Yamaoka T, Itakura M et al. A missense mutant myostatin causes hyperplasia without hypertrophy in the mouse muscle. Biochem Biophys Res Commun 2002; 293: 247–251.

    Article  CAS  PubMed Central  Google Scholar 

  11. Grobet L, Pirottin D, Farnir F, Poncelet D, Royo LJ, Brouwers B et al. Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis 2003; 35: 227–238.

    Article  CAS  PubMed Central  Google Scholar 

  12. Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S et al. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 2003; 300: 965–971.

    Article  CAS  PubMed Central  Google Scholar 

  13. Walsh FS, Celeste AJ . Myostatin: a modulator of skeletal-muscle stem cells. Biochem Soc Trans 2005; 33: 1513–1517.

    Article  CAS  PubMed Central  Google Scholar 

  14. Reisz-Porszasz S, Bhasin S, Artaza JN, Shen R, Sinha-Hikim I, Hogue A et al. Lower skeletal muscle mass in male transgenic mice with muscle-specific overexpression of myostatin. Am J Physiol Endocrinol Metab 2003; 285: E876–E888.

    Article  CAS  PubMed Central  Google Scholar 

  15. Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN et al. Induction of cachexia in mice by systemically administered myostatin. Science 2002; 296: 1486–1488.

    Article  CAS  PubMed Central  Google Scholar 

  16. Lee SJ . Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 2004; 20: 61–86.

    Article  CAS  PubMed Central  Google Scholar 

  17. Tobin JF, Celeste AJ . Myostatin, a negative regulator of muscle mass: implications for muscle degenerative diseases. Curr Opin Pharmacol 2005; 5: 328–332.

    Article  CAS  PubMed Central  Google Scholar 

  18. Hill JJ, Davies MV, Pearson AA, Wang JH, Hewick RM, Wolfman NM et al. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem 2002; 277: 40735–40741.

    Article  CAS  PubMed Central  Google Scholar 

  19. Wolfman NM, McPherron AC, Pappano WN, Davies MV, Song K, Tomkinson KN et al. Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci USA 2003; 100: 15842–15846.

    Article  CAS  PubMed Central  Google Scholar 

  20. Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L . Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 2003; 23: 7230–7242.

    Article  CAS  PubMed Central  Google Scholar 

  21. Zhu X, Topouzis S, Liang LF, Stotish RL . Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine 2004; 26: 262–272.

    Article  CAS  PubMed Central  Google Scholar 

  22. Patel K, Amthor H . The function of Myostatin and strategies of myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul Disord 2005; 15: 117–126.

    Article  CAS  PubMed Central  Google Scholar 

  23. Roth SM, Walsh S . Myostatin: a therapeutic target for skeletal muscle wasting. Curr Opin Clin Nutr Metab Care 2004; 7: 259–263.

    Article  CAS  PubMed Central  Google Scholar 

  24. Khurana TS, Davies KE . Pharmacological strategies for muscular dystrophy. Nat Rev Drug Discov 2003; 2: 379–390.

    Article  CAS  PubMed Central  Google Scholar 

  25. Engvall E, Wewer UM . The new frontier in muscular dystrophy research: booster genes. FASEB J 2003; 17: 1579–1584.

    Article  CAS  PubMed Central  Google Scholar 

  26. Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002; 420: 418–421.

    Article  CAS  PubMed Central  Google Scholar 

  27. Wagner KR, McPherron AC, Winik N, Lee SJ . Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol 2002; 52: 832–836.

    Article  CAS  PubMed Central  Google Scholar 

  28. Bogdanovich S, Perkins KJ, Krag TO, Whittemore LA, Khurana TS . Myostatin propeptide-mediated amelioration of dystrophic pathophysiology. FASEB J 2005; 19: 543–549.

    Article  CAS  PubMed Central  Google Scholar 

  29. Holmes JH, Ashmore CR, Robinson DW . Effects of stress on cattle with hereditary muscular hypertrophy. J Anim Sci 1973; 36: 684–694.

    Article  CAS  PubMed Central  Google Scholar 

  30. McMahon CD, Popovic L, Oldham JM, Jeanplong F, Smith HK, Kambadur R et al. Myostatin-deficient mice lose more skeletal muscle mass than wild-type controls during hindlimb suspension. Am J Physiol Endocrinol Metab 2003; 285: E82–E87.

    Article  CAS  PubMed Central  Google Scholar 

  31. Li ZF, Shelton GD, Engvall E . Elimination of myostatin does not combat muscular dystrophy in dy mice but increases postnatal lethality. Am J Pathol 2005; 166: 491–497.

    Article  CAS  PubMed Central  Google Scholar 

  32. Duguez S, Bartoli M, Richard I . Calpain 3: a key regulator of the sarcomere? FEBS J 2006; 273: 3427–3436.

    Article  CAS  PubMed Central  Google Scholar 

  33. Roberds SL, Leturcq F, Allamand V, Piccolo F, Jeanpierre M, Anderson RD et al. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 1994; 78: 625–633.

    Article  CAS  PubMed Central  Google Scholar 

  34. Ozawa E, Mizuno Y, Hagiwara Y, Sasaoka T, Yoshida M . Molecular and cell biology of the sarcoglycan complex. Muscle Nerve 2005; 32: 563–576.

    Article  CAS  PubMed Central  Google Scholar 

  35. Lim LE, Campbell KP . The sarcoglycan complex in limb-girdle muscular dystrophy. Curr Opin Neurol 1998; 11: 443–452.

    Article  CAS  PubMed Central  Google Scholar 

  36. Kramerova I, Kudryashova E, Tidball JG, Spencer MJ . Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro. Hum Mol Genet 2004; 13: 1373–1388.

    Article  CAS  PubMed Central  Google Scholar 

  37. Fougerousse F, Gonin P, Durand M, Richard I, Raymackers JM . Force impairment in calpain 3-deficient mice is not correlated with mechanical disruption. Muscle Nerve 2003; 27: 616–623.

    Article  CAS  PubMed Central  Google Scholar 

  38. Bartoli M, Poupiot J, Goyenvalle A, Perez N, Garcia L, Danos O et al. Noninvasive monitoring of therapeutic gene transfer in animal models of muscular dystrophies. Gene Therapy 2006; 13: 20–28.

    Article  CAS  PubMed Central  Google Scholar 

  39. Bartoli M, Roudaut C, Martin S, Fougerousse F, Suel L, Poupiot J et al. Safety and efficacy of AAV-mediated calpain 3 gene transfer in a mouse model of limb-girdle muscular dystrophy type 2A. Mol Ther 2006; 13: 250–259.

    Article  CAS  PubMed Central  Google Scholar 

  40. Kramerova I, Kudryashova E, Venkatraman G, Spencer MJ . Calpain 3 participates in sarcomere remodeling by acting upstream of the ubiquitin-proteasome pathway. Hum Mol Genet 2005; 14: 2125–2134.

    Article  CAS  PubMed Central  Google Scholar 

  41. Wang M, Orsini C, Casanova D, Millan JL, Mahfoudi A, Thuillier V . MUSEAP, a novel reporter gene for the study of long-term gene expression in immunocompetent mice. Gene 2001; 279: 99–108.

    Article  CAS  PubMed Central  Google Scholar 

  42. Snyder RO, Miao CH, Patijn GA, Spratt SK, Danos O, Nagy D et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 1997; 16: 270–276.

    Article  CAS  PubMed Central  Google Scholar 

  43. Apparailly F, Khoury M, Vervoordeldonk MJ, Adriaansen J, Gicquel E, Perez N et al. Adeno-associated virus pseudotype 5 vector improves gene transfer in arthritic joints. Hum Gene Ther 2005; 16: 426–434.

    Article  CAS  PubMed Central  Google Scholar 

  44. Zhang HG, Wang YM, Xie JF, Liang X, Hsu HC, Zhang X et al. Recombinant adenovirus expressing adeno-associated virus cap and rep proteins supports production of high-titer recombinant adeno-associated virus. Gene Therapy 2001; 8: 704–712.

    Article  CAS  PubMed Central  Google Scholar 

  45. Fougerousse F, Bartoli M, Poupiot J, Arandel L, Durand M, Guerchet N et al. Phenotypic correction of α-sarcoglycan deficiency by intra-arterial injection of a muscle-specific serotype 1 rAAV vector. Mol Ther 2007; 15: 53–61.

    Article  CAS  PubMed Central  Google Scholar 

  46. Duclos F, Straub V, Moore SA, Venzke DP, Hrstka RF, Crosbie RH et al. Progressive muscular dystrophy in alpha-sarcoglycan-deficient mice. J Cell Biol 1998; 142: 1461–1471.

    Article  CAS  PubMed Central  Google Scholar 

  47. Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 1995; 81: 27–40.

    Article  CAS  Google Scholar 

  48. Gonin P, Arandel L, Van Wittenberghe L, Marais T, Perez N, Danos O . Femoral intra-arterial injection: a tool to deliver and assess recombinant AAV constructs in rodents whole hind limb. J Gene Med 2005; 7: 782–791.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the production and the in vivo departments of Généthon, especially Muriel Durand and Nicolas Guerchet. We also thank the Howard Hughes Medical Institute (Iowa City, IA, USA) for providing us with Sgca-null mice. We thank Elisabeth Baudoin for manuscript editing. This work was funded by the Association Française contre les Myopathies, the Centre National de la Recherche Scientifique, Genopole (Evry) and the Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Richard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartoli, M., Poupiot, J., Vulin, A. et al. AAV-mediated delivery of a mutated myostatin propeptide ameliorates calpain 3 but not α-sarcoglycan deficiency. Gene Ther 14, 733–740 (2007). https://doi.org/10.1038/sj.gt.3302928

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302928

Keywords

This article is cited by

Search

Quick links