Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Adeno-associated virus 2-mediated gene transfer: role of a cellular serine/threonine protein phosphatase in augmenting transduction efficiency

Abstract

We have documented that a cellular chaperone protein, FKBP52, when phosphorylated at tyrosine and/or serine/threonine (Ser/Thr) residues, interacts with the D-sequence in the inverted terminal repeats of the adeno-associated virus 2 (AAV) genome, inhibits the viral second-strand DNA synthesis, and leads to inefficient transgene expression from recombinant AAV vectors in certain cell types. We have also demonstrated that FKBP52 is dephosphorylated at tyrosine residues by T-cell protein tyrosine phosphatase (TC-PTP), and that deliberate overexpression of TC-PTP leads to more efficient viral second-strand DNA synthesis, and increased transgene expression. However, the identity of the putative Ser/Thr protein phosphatase that dephosphorylates FKBP52 at Ser/Thr residues has remained elusive. Using known inhibitors of Ser/Thr phosphatases, we have now identified protein phosphatase 5 (PP5) to be a candidate enzyme. Deliberate overexpression of PP5 in 293 cells, which does not influence cellular growth, leads to 5-fold increase in the transduction efficiency of conventional single-stranded AAV vectors, but no significant enhancement in the transduction efficiency of self-complementary AAV vectors, suggesting that PP5 plays a role in AAV second-strand DNA synthesis. Electrophoretic mobility-shift assays show that in cells overexpressing PP5, the extent of the complex formation between FKBP52 and the AAV D-sequence is significantly reduced. These studies suggest that PP5-mediated dephosphorylation of FKBP52 at Ser/Thr residues augments viral second-strand DNA synthesis and enhances AAV transduction efficiency, which has implications in the optimal use of these vectors in human gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Conlon TJ, Flotte TR . Recombinant adeno-associated virus vectors for gene therapy. Expert Opin Biol Ther 2004; 4: 1093–1101.

    Article  CAS  PubMed  Google Scholar 

  2. Marshall E . Gene therapy. Viral vectors still pack surprises. Science 2001; 294: 1640.

    Article  CAS  PubMed  Google Scholar 

  3. Berns KI, Giraud C . Biology of adeno-associated virus. Curr Top Microbiol Immunol 1996; 218: 1–23.

    CAS  PubMed  Google Scholar 

  4. Muzyczka N . Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol 1992; 158: 97–129.

    CAS  PubMed  Google Scholar 

  5. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM . Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996; 70: 520–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferrari FK, Samulski T, Shenk T, Samulski RJ . Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996; 70: 3227–3234.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Qing K, Hansen J, Weigel-Kelley KA, Tan M, Zhou S, Srivastava A . Adeno-associated virus type 2-mediated gene transfer: role of cellular FKBP52 protein in transgene expression. J Virol 2001; 75: 8968–8976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qing K, Khuntirat B, Mah C, Kube DM, Wang XS, Ponnazhagan S et al. Adeno-associated virus type 2-mediated gene transfer: correlation of tyrosine phosphorylation of the cellular single-stranded D sequence-binding protein with transgene expression in human cells in vitro and murine tissues in vivo. J Virol 1998; 72: 1593–1599.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Qing K, Li W, Zhong L, Tan M, Hansen J, Weigel-Kelley KA et al. Adeno-associated virus type 2-mediated gene transfer: role of cellular T-cell protein tyrosine phosphatase in transgene expression in established cell lines in vitro and transgenic mice in vivo. J Virol 2003; 77: 2741–2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhong L, Chen L, Li Y, Qing K, Weigel-Kelley KA, Chan RJ et al. Self-complementary adeno-associated virus 2 (AAV)-T cell protein tyrosine phosphatase vectors as helper viruses to improve transduction efficiency of conventional single-stranded AAV vectors in vitro and in vivo. Mol Ther 2004; 10: 950–957.

    Article  CAS  PubMed  Google Scholar 

  11. Zhong L, Li W, Yang Z, Chen L, Li Y, Qing K et al. Improved transduction of primary murine hepatocytes by recombinant adeno-associated virus 2 vectors in vivo. Gene Therapy 2004; 11: 1165–1169.

    Article  CAS  PubMed  Google Scholar 

  12. Zhong L, Li W, Yang Z, Qing K, Tan M, Hansen J et al. Impaired nuclear transport and uncoating limit recombinant adeno-associated virus 2 vector-mediated transduction of primary murine hematopoietic cells. Hum Gene Ther 2004; 15: 1207–1218.

    Article  CAS  PubMed  Google Scholar 

  13. Zhong L, Qing K, Si Y, Chen L, Tan M, Srivastava A . Heat-shock treatment-mediated increase in transduction by recombinant adeno-associated virus 2 vectors is independent of the cellular heat-shock protein 90. J Biol Chem 2004; 279: 12714–12723.

    Article  CAS  PubMed  Google Scholar 

  14. McCarty DM, Monahan PE, Samulski RJ . Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Therapy 2001; 8: 1248–1254.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X . Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Therapy 2003; 10: 2105–2111.

    Article  CAS  PubMed  Google Scholar 

  16. Mah C, Qing K, Khuntirat B, Ponnazhagan S, Wang XS, Kube DM et al. Adeno-associated virus type 2-mediated gene transfer: role of epidermal growth factor receptor protein tyrosine kinase in transgene expression. J Virol 1998; 72: 9835–9843.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Qing K, Wang XS, Kube DM, Ponnazhagan S, Bajpai A, Srivastava A . Role of tyrosine phosphorylation of a cellular protein in adeno-associated virus 2-mediated transgene expression. Proc Natl Acad Sci USA 1997; 94: 10879–10884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen PT . Novel protein serine/threonine phosphatases: variety is the spice of life. Trends Biochem Sci 1997; 22: 245–251.

    Article  CAS  PubMed  Google Scholar 

  19. Chen MX, McPartlin AE, Brown L, Chen YH, Barker HM, Cohen PT . A novel human protein serine/threonine phosphatase, which possesses four tetratricopeptide repeat motifs and localizes to the nucleus. EMBO J 1994; 13: 4278–4290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Becker W, Buttini M, Limonta S, Boddeke H, Joost HG . Distribution of the mRNA for protein phosphatase T in rat brain. Brain Res Mol Brain Res 1996; 36: 23–28.

    Article  CAS  PubMed  Google Scholar 

  21. Bahl R, Bradley KC, Thompson KJ, Swain RA, Rossie S, Meisel RL . Localization of protein Ser/Thr phosphatase 5 in rat brain. Brain Res Mol Brain Res 2001; 90: 101–109.

    Article  CAS  PubMed  Google Scholar 

  22. McCown TJ, Xiao X, Li J, Breese GR, Samulski RJ . Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 1996; 713: 99–107.

    Article  CAS  PubMed  Google Scholar 

  23. Cohen PT, Chen MX, Armstrong CG . Novel protein phosphatases that may participate in cell signaling. Adv Pharmacol 1996; 36: 67–89.

    Article  CAS  PubMed  Google Scholar 

  24. Blatch GL, Lassle M . The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. Bioessays 1999; 21: 932–939.

    Article  CAS  PubMed  Google Scholar 

  25. Lu B, Ma CH, Brazas R, Jin H . The major phosphorylation sites of the respiratory syncytial virus phosphoprotein are dispensable for virus replication in vitro. J Virol 2002; 76: 10776–10784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chinkers M . Protein phosphatase 5 in signal transduction. Trends Endocrinol Metab 2001; 12: 28–32.

    Article  CAS  PubMed  Google Scholar 

  27. Liu F, Grundke-Iqbal I, Iqbal K, Gong CX . Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 2005; 22: 1942–1950.

    Article  PubMed  Google Scholar 

  28. Kutuzov MA, Andreeva AV, Voyno-Yasenetskaya TA . Regulation of apoptosis signal-regulating kinase 1 (ASK1) by polyamine levels via protein phosphatase 5. J Biol Chem 2005; 280: 25388–25395.

    Article  CAS  PubMed  Google Scholar 

  29. Liu F, Iqbal K, Grundke-Iqbal I, Rossie S, Gong CX . Dephosphorylation of tau by protein phosphatase 5: impairment in Alzheimer's disease. J Biol Chem 2005; 280: 1790–1796.

    Article  CAS  PubMed  Google Scholar 

  30. Gong CX, Liu F, Wu G, Rossie S, Wegiel J, Li L et al. Dephosphorylation of microtubule-associated protein tau by protein phosphatase 5. J Neurochem 2004; 88: 298–310.

    Article  CAS  PubMed  Google Scholar 

  31. Wechsler T, Chen BP, Harper R, Morotomi-Yano K, Huang BC, Meek K et al. DNA-PKcs function regulated specifically by protein phosphatase 5. Proc Natl Acad Sci USA 2004; 101: 1247–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galigniana MD, Radanyi C, Renoir JM, Housley PR, Pratt WB . Evidence that the peptidylprolyl isomerase domain of the hsp90-binding immunophilin FKBP52 is involved in both dynein interaction and glucocorticoid receptor movement to the nucleus. J Biol Chem 2001; 276: 14884–14889.

    Article  CAS  PubMed  Google Scholar 

  33. Davies TH, Ning YM, Sanchez ER . Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506. Biochemistry 2005; 44: 2030–2038.

    Article  CAS  PubMed  Google Scholar 

  34. Jackson RC, Fry DW, Boritzki TJ, Roberts BJ, Hook KE, Leopold WR . The biochemical pharmacology of CI-920, a structurally novel antibiotic with antileukemic activity. Adv Enzyme Regul 1985; 23: 193–215.

    Article  CAS  PubMed  Google Scholar 

  35. Honkanen RE, Golden T . Regulators of serine/threonine protein phosphatases at the dawn of a clinical era? Curr Med Chem 2002; 9: 2055–2075.

    Article  CAS  PubMed  Google Scholar 

  36. Borthwick EB, Zeke T, Prescott AR, Cohen PT . Nuclear localization of protein phosphatase 5 is dependent on the carboxy-terminal region. FEBS Lett 2001; 491: 279–284.

    Article  CAS  PubMed  Google Scholar 

  37. Barton GJ, Cohen PT, Barford D . Conservation analysis and structure prediction of the protein serine/threonine phosphatases. Sequence similarity with diadenosine tetraphosphatase from Escherichia coli suggests homology to the protein phosphatases. Eur J Biochem 1994; 220: 225–237.

    Article  CAS  PubMed  Google Scholar 

  38. Chen MX, Cohen PT . Activation of protein phosphatase 5 by limited proteolysis or the binding of polyunsaturated fatty acids to the TPR domain. FEBS Lett 1997; 400: 136–140.

    Article  CAS  PubMed  Google Scholar 

  39. Sinclair C, Borchers C, Parker C, Tomer K, Charbonneau H, Rossie S . The tetratricopeptide repeat domain and a C-terminal region control the activity of Ser/Thr protein phosphatase 5. J Biol Chem 1999; 274: 23666–23672.

    Article  CAS  PubMed  Google Scholar 

  40. Yang J, Rose SM, Cliff MJ, Williams MA, Ladbury JE, Cohen PT et al. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. EMBO J 2005; 24: 1–10.

    Article  PubMed  Google Scholar 

  41. Das AK, Cohen PW, Barford D . The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein–protein interactions. EMBO J 1998; 17: 1192–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Muller MT . Binding of the herpes simplex virus immediate-early gene product ICP4 to its own transcription start site. J Virol 1987; 61: 858–865.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Song S, Lu Y, Choi YK, Han Y, Tang Q, Zhao G et al. DNA-dependent PK inhibits adeno-associated virus DNA integration. Proc Natl Acad Sci USA 2004; 101: 2112–2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Song S, Laipis PJ, Berns KI, Flotte TR . Effect of DNA-dependent protein kinase on the molecular fate of the rAAV2 genome in skeletal muscle. Proc Natl Acad Sci USA 2001; 98: 4084–4088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zentilin L, Marcello A, Giacca M . Involvement of cellular double-stranded DNA break binding proteins in processing of the recombinant adeno-associated virus genome. J Virol 2001; 75: 12279–12287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Silverstein AM, Galigniana MD, Chen MS, Owens-Grillo JK, Chinkers M, Pratt WB . Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin. J Biol Chem 1997; 272: 16224–16230.

    Article  CAS  PubMed  Google Scholar 

  47. Chen MS, Silverstein AM, Pratt WB, Chinkers M . The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant. J Biol Chem 1996; 271: 32315–32320.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs David J Chen and Benjamin PC Chen for generously providing the human PP5 cDNA, and Dr Keyun Qing for his expert technical advice and general counsel. We also thank Dr Jacqueline A Hobbs for a critical review of this paper. This work was supported in part by United States Public Health Service Grants R01 EB-002073, R01 HL-65570, R01 HL-76901, and P01 DK-058327 (Project 1) from the National Institutes of Health (to AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Wu, J., Zhong, L. et al. Adeno-associated virus 2-mediated gene transfer: role of a cellular serine/threonine protein phosphatase in augmenting transduction efficiency. Gene Ther 14, 545–550 (2007). https://doi.org/10.1038/sj.gt.3302886

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302886

Keywords

This article is cited by

Search

Quick links