Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neuroprotection by GDNF-secreting stem cells in a Huntington's disease model: optical neuroimage tracking of brain-grafted cells

Abstract

The use of stem cells for reconstructive or neuroprotective strategies can benefit from new advances in neuroimaging techniques to track grafted cells. In the present work, we analyze the potential of a neural stem cell (NSC) line, which stably expresses the glial cell line-derived neurotrophic factor (GDNF) and the firefly luciferase gene (GDNF/Luc-NSC), for cell therapy in a Huntington's disease mouse model. Our results show that detection of light photons is an effective method to quantify the proliferation rate and to characterize the migration pathways of transplanted NSCs. Intravenous administration of luciferine, the luciferase substract, into the grafted animals allowed the detection of implanted cells in real time by an optical neuroimaging methodology, overpassing the limits of serial histological analyses. We observed that transplanted GDNF/Luc-NSCs survive after grafting and expand more when transplanted in quinolinate-lesioned nude mouse striata than when transplanted in non-lesioned mice. We also demonstrate that GDNF/Luc-NSCs prevent the degeneration of striatal neurons in the excitotoxic mouse model of Huntington's disease and reduce the amphetamine-induced rotational behavior in mice bearing unilateral lesions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Arenas E . Stem cells in the treatment of Parkinson's disease. Brain Res Bull 2002; 57: 795–808.

    Article  CAS  PubMed  Google Scholar 

  2. Alberch J, Perez-Navarro E, Canals JM . Neuroprotection by neurotrophins and GDNF family members in the excitotoxic model of Huntington's disease. Brain Res Bull 2002; 57: 817–822.

    Article  CAS  PubMed  Google Scholar 

  3. Akerud P, Canals JM, Snyder EY, Arenas E . Neuroprotection through delivery of glial cell line-derived neurotrophic factor by neural stem cells in a mouse model of Parkinson's disease. J Neurosci 2001; 21: 8108–8118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pochon NA, Menoud A, Tseng JL, Zurn AD, Aebischer P . Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. Eur J Neurosci 1997; 9: 463–471.

    Article  CAS  PubMed  Google Scholar 

  5. Alberch J, Perez-Navarro E, Canals JM . Neurotrophic factors in Huntington's disease. Prog Brain Res 2004; 146: 195–229.

    CAS  PubMed  Google Scholar 

  6. Enomoto H . Regulation of neural development by glial cell line-derived neurotrophic factor family ligands. Anat Sci Int 2005; 80: 42–52.

    Article  CAS  PubMed  Google Scholar 

  7. Airaksinen MS, Saarma M . The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 2002; 3: 383–394.

    Article  CAS  PubMed  Google Scholar 

  8. Marco S, Canudas AM, Canals JM, Gavalda N, Perez-Navarro E, Alberch J . Excitatory amino acids differentially regulate the expression of GDNF, neurturin, and their receptors in the adult rat striatum. Exp Neurol 2002; 174: 243–252.

    Article  CAS  PubMed  Google Scholar 

  9. Perez-Navarro E, Arenas E, Reiriz J, Calvo N, Alberch J . Glial cell line-derived neurotrophic factor protects striatal calbindin-immunoreactive neurons from excitotoxic damage. Neuroscience 1996; 75: 345–352.

    Article  CAS  PubMed  Google Scholar 

  10. Perez-Navarro E, Arenas E, Marco S, Alberch J . Intrastriatal grafting of a GDNF-producing cell line protects striatonigral neurons from quinolinic acid excitotoxicity in vivo. Eur J Neurosci 1999; 11: 241–249.

    Article  CAS  PubMed  Google Scholar 

  11. Araujo DM, Hilt DC . Glial cell line-derived neurotrophic factor attenuates the excitotoxin-induced behavioral and neurochemical deficits in a rodent model of Huntington's disease. Neuroscience 1997; 81: 1099–1110.

    Article  CAS  PubMed  Google Scholar 

  12. Hoffman D, Breakefield XO, Short MP, Aebischer P . Transplantation of a polymer-encapsulated cell line genetically engineered to release NGF. Exp Neurol 1993; 122: 100–106.

    Article  CAS  PubMed  Google Scholar 

  13. Sala-Newby GB, Kendall JM, Jones H, Taylor KM, Badminton MN, Llewellyn DH, Campbell AK . Bioluminescent and chemiluminescent indicators for molecular signaling and function in living cells. In: Mason WT (ed). Fluorescent and Luminescent Probes for Biological Activity: a Practical Guide to Technology for Quantitative Real-Time Analysis (Biological Techniques). Academic Press: London, 1996, pp 58–82.

    Google Scholar 

  14. Rubio N, Villacampa MM, El HN, Blanco J . Metastatic burden in nude mice organs measured using prostate tumor PC-3 cells expressing the luciferase gene as a quantifiable tumor cell marker. Prostate 2000; 44: 133–143.

    Article  CAS  PubMed  Google Scholar 

  15. Massoud TF, Gambhir SS . Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003; 17: 545–580.

    Article  CAS  PubMed  Google Scholar 

  16. El Hilali N, Rubio N, Martinez-Villacampa M, Blanco J . Combined noninvasive imaging and luminometric quantification of luciferase-labeled human prostate tumors and metastases. Lab Invest 2002; 82: 1563–1571.

    Article  CAS  PubMed  Google Scholar 

  17. Rubio N, Villacampa MM, Blanco J . Traffic to lymph nodes of PC-3 prostate tumor cells in nude mice visualized using the luciferase gene as a tumor cell marker. Lab Invest 1998; 78: 1315–1325.

    CAS  PubMed  Google Scholar 

  18. Avarez-Buylla A, Garcia-Verdugo JM . Neurogenesis in adult subventricular zone. J Neurosci 2002; 22: 629–634.

    Article  Google Scholar 

  19. Stroh A, Faber C, Neuberger T, Lorenz P, Sieland K, Jakob PM et al. In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6T) magnetic resonance imaging. Neuroimage 2005; 24: 635–645.

    Article  PubMed  Google Scholar 

  20. Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JW . Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 2004; 17: 513–517.

    Article  PubMed  Google Scholar 

  21. Bulte JW, Kraitchman DL, Mackay AM, Pittenger MF . Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides. Blood 2004; 104: 3410–3412.

    Article  CAS  PubMed  Google Scholar 

  22. Beal MF, Ferrante RJ, Swartz KJ, Kowall NW . Chronic quinolinic acid lesions in rats closely resemble Huntington's disease. J Neurosci 1991; 11: 1649–1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lundberg C, Martinez-Serrano A, Cattaneo E, McKay RD, Bjorklund A . Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum. Exp Neurol 1997; 145: 342–360.

    Article  CAS  PubMed  Google Scholar 

  24. Baum C, Hegewisch-Becker S, Eckert HG, Stocking C, Ostertag W . Novel retroviral vectors for efficient expression of the multidrug resistance (mdr-1) gene in early hematopoietic cells. J Virol 1995; 69: 7541–7547.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bosch M, Pineda JR, Sunol C, Petriz J, Cattaneo E, Alberch J et al. Induction of GABAergic phenotype in a neural stem cell line for transplantation in an excitotoxic model of Huntington's disease. Exp Neurol 2004; 190: 42–58.

    Article  CAS  PubMed  Google Scholar 

  26. Canals JM, Pineda JR, Torres-Peraza JF, Bosch M, Martin-Ibanez R, Munoz MT et al. Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease. J Neurosci 2004; 24: 7727–7739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M Teresa Muñoz and Ana López for technical assistance, and Dr Jaume Comas from the Cell Separation Unit of the Serveis Científico-Tècnics (Universitat de Barcelona) for their support and advice with the cell sorting procedures We thank Dr Evan Y Snyder for the generous gift of the c17.2 cell line. We are also grateful to Dr Amèrica Jiménez and the staff of the animal facility (Facultat de Medicina, Universitat de Barcelona) for their help with mice care. This study was supported by grants from the Ministerio de Educación y Ciencia (SAF2005-01335, JA; SAF2005-00147, JMC; Spain), the Ministerio de Sanidad y Consumo (Redes Temáticas de Investigación Coorporativa: G03/167 and G03/210 and FIS: PI040659; Spain), Fundació La Caixa (Spain) and the Network of excellence for Diagnostic Molecular Imaging (DiMI; Sixth Framework, European Community). JRP is a fellow from the Spanish Ministerio de Educación y Ciencia and NU is a fellow from CIRIT, Generalitat de Catalunya (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Canals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pineda, J., Rubio, N., Akerud, P. et al. Neuroprotection by GDNF-secreting stem cells in a Huntington's disease model: optical neuroimage tracking of brain-grafted cells. Gene Ther 14, 118–128 (2007). https://doi.org/10.1038/sj.gt.3302847

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302847

Keywords

This article is cited by

Search

Quick links