Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene therapy of diabetes using a novel GLP-1/IgG1-Fc fusion construct normalizes glucose levels in db/db mice

Abstract

Glucagon-like peptide (GLP-1), a major physiological incretin, plays numerous important roles in modulating blood glucose homeostasis and has been proposed for the treatment of type 2 diabetes. The major obstacles for using native GLP-1 as a therapeutic agent are that it must be delivered by a parenteral route and has a short half-life. In an attempt to develop a strategy to prolong the physiological t1/2 and enhance the potency of GLP-1, a fusion protein consisting of active human GLP-1 and mouse IgG1 heavy chain constant regions (GLP-1/Fc) was generated. A plasmid encoding an IgK leader peptide-driven secretable fusion protein of the active GLP-1 and IgG1-Fc was constructed for mammalian expression. This plasmid allows for expression of bivalent GLP-1 peptide ligands as a result of IgG-Fc homodimerization. In vitro studies employing purified GLP-1/Fc indicate that the fusion protein is functional and elevates cAMP levels in insulin-secreting INS-1 cells. In addition, it stimulates insulin secretion in a glucose concentration-dependent manner. Intramuscular gene transfer of the plasmid in db/db mice demonstrated that expression of the GLP-1/Fc peptide normalizes glucose tolerance by enhancing insulin secretion and suppressing glucagon release. This strategy of using a bivalent GLP-1/Fc fusion protein as a therapeutic agent is a novel approach for the treatment of diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Brubaker PL, Drucker DJ . Structure-function of the glucagon receptor family of G protein-coupled receptors: the glucagon, GIP, GLP-1, and GLP-2 receptors. Receptors Channels 2002; 8: 179–188.

    Article  CAS  Google Scholar 

  2. Thorens B . Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci USA 1992; 89: 8641–8645.

    Article  CAS  Google Scholar 

  3. Bullock BP, Heller RS, Habener JF . Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 1996; 137: 2968–2978.

    Article  CAS  Google Scholar 

  4. Buteau J, Roduit R, Susini S, Prentki M . Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-1)-cells. Diabetologia 1999; 42: 856–864.

    Article  CAS  Google Scholar 

  5. Montrose-Rafizadeh C, Avdonin P, Garant MJ, Rodgers BD, Kole S, Yang H et al. Pancreatic glucagon-like peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells. Endocrinology 1999; 140: 1132–1140.

    Article  CAS  Google Scholar 

  6. Wang Q, Brubaker PL . Glucagon-like peptide-1 treatment delays the onset of diabetes in 8 week-old db/db mice. Diabetologia 2002; 45: 1263–1273.

    Article  CAS  Google Scholar 

  7. Wang Q, Li L, Xu E, Wong V, Rhodes C, Brubaker PL et al. Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 beta cells. Diabetologia 2004; 47: 478–487.

    Article  CAS  Google Scholar 

  8. Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, Prentki M et al. Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes 2001; 50: 2237–2243.

    Article  CAS  Google Scholar 

  9. Nauck MA . Glucagon-like peptide 1 (GLP-1) in the treatment of diabetes. Horm Metab Res 2004; 36: 852–858.

    Article  CAS  Google Scholar 

  10. Ritzel R, Schulte M, Porksen N, Nauck MS, Holst JJ, Juhl C et al. Glucagon-like peptide 1 increases secretory burst mass of pulsatile insulin secretion in patients with type 2 diabetes and impaired glucose tolerance. Diabetes 2001; 50: 776–784.

    Article  CAS  Google Scholar 

  11. Ritzel R, Orskov C, Holst JJ, Nauck MA . Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 (7–36 amide) after subcutaneous injection in healthy volunteers. Dose-response-relationships. Diabetologia 1995; 38: 720–725.

    Article  CAS  Google Scholar 

  12. Willms B, Werner J, Holst JJ, Orskov C, Creutzfeldt W, Nauck MA et al. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7–36) amide in type 2 (noninsulin-dependent) diabetic patients. J Clin Endocrinol Metab 1996; 81: 327–332.

    CAS  Google Scholar 

  13. Vella A, Shah P, Basu R, Basu A, Holst JJ, Rizza RA et al. Effect of glucagon-like peptide 1(7–36) amide on glucose effectiveness and insulin action in people with type 2 diabetes. Diabetes 2000; 49: 611–617.

    Article  CAS  Google Scholar 

  14. Conarello SL, Li Z, Ronan J, Roy RS, Zhu L, Jiang G et al. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc Natl Acad Sci USA 2003; 100: 6825–6830.

    Article  CAS  Google Scholar 

  15. Egan JM, Meneilly GS, Habener JF, Elahi D . Glucagon-like peptide-1 augments insulin-mediated glucose uptake in the obese state. J Clin Endocrinol Metab 2002; 87: 3768–3773.

    Article  CAS  Google Scholar 

  16. Miyawaki K, Yamada Y, Yano H, Niwa H, Ban N, Ihara Y et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci USA 1999; 96: 14843–14847.

    Article  CAS  Google Scholar 

  17. Holz GG, Kuhtreiber WM, Habener JF . Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7–37). Nature 1993; 361: 362–365.

    Article  CAS  Google Scholar 

  18. Xu G, Stoffers DA, Habener JF, Bonner-Weir S . Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48: 2270–2276.

    Article  CAS  Google Scholar 

  19. Tourrel C, Bailbe D, Lacorne M, Meile MJ, Kergoat M, Portha B et al. Persistent improvement of type 2 diabetes in the Goto-Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4. Diabetes 2002; 51: 1443–1452.

    Article  CAS  Google Scholar 

  20. Bouckenooghe T, Vandewalle B, Lukowiak B, Kerr-Conte J, Belaich S, Gmyr V et al. Modulation of specific beta cell gene (re)expression during in vitro expansion of human pancreatic islet cells. Cell Transplant 2003; 12: 799–807.

    Article  Google Scholar 

  21. Flint A, Raben A, Astrup A, Holst JJ . Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998; 101: 515–520.

    Article  CAS  Google Scholar 

  22. Kieffer TJ, McIntosh CH, Pederson RA . Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 1995; 136: 3585–3596.

    Article  CAS  Google Scholar 

  23. Mentlein R, Gallwitz B, Schmidt WE . Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993; 214: 829–835.

    Article  CAS  Google Scholar 

  24. Montrose-Rafizadeh C, Avdonin P, Garant MJ, Rodgers BD, Kole S, Yang H et al. Pancreatic glucagon-like peptide-1 receptor couples to multiple G proteins and activates mitogen-activated protein kinase pathways in Chinese hamster ovary cells. Endocrinology 1999; 140: 1132–1140.

    Article  CAS  Google Scholar 

  25. Ahren B, Schmitz O . GLP-1 receptor agonists and DPP-4 inhibitors in the treatment of type 2 diabetes. Horm Metab Res 2004; 36: 867–876.

    Article  CAS  Google Scholar 

  26. Green BD, Gault VA, O’harte FP, Flatt PR . Structurally modified analogues of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) as future antidiabetic agents. Curr Pharm Des 2004; 10: 3651–3662.

    Article  CAS  Google Scholar 

  27. Chang AM, Jakobsen G, Sturis J, Smith MJ, Bloem CJ, An B et al. The GLP-1 derivative NN2211 restores beta-cell sensitivity to glucose in type 2 diabetic patients after a single dose. Diabetes 52; 2003: 1786–1791.

    Google Scholar 

  28. Liu HK, Green BD, Gault VA, McCluskey JT, McClenaghan NH, O’Harte FP et al. N-acetyl-GLP-1: a DPP IV-resistant analogue of glucagon-like peptide-1 (GLP-1) with improved effects on pancreatic beta-cell-associated gene expression. Cell Biol Int 2004; 28: 69–73.

    Article  CAS  Google Scholar 

  29. Fineman MS, Bicsak TA, Shen LZ, Taylor K, Gaines E, Varns A et al. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabet Care 2003; 26: 2370–2377.

    Article  CAS  Google Scholar 

  30. Kim JG, Baggio LL, Bridon DP, Castaigne JP, Robitaille MF, Jette L et al. Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo. Diabetes 2003; 52: 751–759.

    Article  CAS  Google Scholar 

  31. Weir AN, Nesbitt A, Chapman AP, Popplewell AG, Antoniw P, Lawson AD et al. Formatting antibody fragments to mediate specific therapeutic functions. Biochem Soc Trans 2002; 30: 512–516.

    Article  CAS  Google Scholar 

  32. Goldenberg MM . Etanercept, a novel drug for the treatment of patients with severe, active rheumatoid arthritis. Clin Ther 1999; 21: 75–87.

    Article  CAS  Google Scholar 

  33. Reimold AM . TNFalpha as therapeutic target: new drugs, more applications. Curr Drug Targets Inflamm Allergy 2002; 1: 377–392.

    Article  CAS  Google Scholar 

  34. George SR, O’Dowd BF, Lee SP . G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 2002; 1: 808–820.

    Article  CAS  Google Scholar 

  35. Dupuis DS, Perez M, Halazy S, Colpaert FC, Pauwels PJ . Magnitude of 5-HT1B and 5-HT1A receptor activation in guinea-pig and rat brain: evidence from sumatriptan dimer-mediated [35S]GTPgammaS binding responses. Brain Res Mol Brain Res 1999; 67: 107–123.

    Article  CAS  Google Scholar 

  36. Hartikka J, Sawdey M, Cornefert-Jensen F, Margalith M, Barnhart K, Nolasco M et al. An improved plasmid DNA expression vector for direct injection into skeletal muscle. Hum Gene Ther 1996; 20: 1205–1217.

    Article  Google Scholar 

  37. Lawson BR, Prud’homme GJ, Chang Y, Gardner HA, Kuan J, Kono DH et al. Treatment of murine lupus with cDNA encoding IFN-gammaR/Fc. J Clin Invest 2000; 106: 207–215.

    Article  CAS  Google Scholar 

  38. Prud’homme GJ, Chang Y . Prevention of autoimmune diabetes by intramuscular gene therapy with a nonviral vector encoding an interferon-gamma receptor/IgG1 fusion protein. Gene Therapy 1999; 6: 771–777.

    Article  Google Scholar 

  39. Ozmen L, Gribaudo G, Fountoulakis M, Gentz R, Landolfo S, Garotta G et al. Mouse soluble IFN gamma receptor as IFN gamma inhibitor. Distribution, antigenicity, and activity after injection in mice. J Immunol 1993; 150: 2698–2705.

    CAS  PubMed  Google Scholar 

  40. Kurschner C, Ozmen L, Garotta G, Dembic Z . IFN-gamma receptor-Ig fusion proteins. Half-life, immunogenicity, and in vivo activity. J Immunol 1992; 149: 4096–4100.

    CAS  PubMed  Google Scholar 

  41. Kurschner C, Garotta G, Dembic Z . Construction, purification, and characterization of new interferon gamma (IFN gamma) inhibitor proteins. Three IFN gamma receptor-immunoglobulin hybrid molecules. J Biol Chem 1992; 267: 9354–9360.

    CAS  PubMed  Google Scholar 

  42. Jungbauer A, Tauer C, Reiter M, Purtscher M, Wenisch E, Steindl F et al. Comparison of protein A, protein G and copolymerized hydroxyapatite for the purification of human monoclonal antibodies. J Chromatogr 1989; 476: 257–268.

    Article  CAS  Google Scholar 

  43. Baggio L, Kieffer TJ, Drucker DJ . Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, regulates fasting glycemia and nonenteral glucose clearance in mice. Endocrinology 2000; 141: 3703–3709.

    Article  CAS  Google Scholar 

  44. Drucker DJ . Glucagon-like peptides. Diabetes 1998; 47: 159–169.

    Article  CAS  Google Scholar 

  45. Green BD, Gault VA, Mooney MH, Irwin N, Bailey CJ, Harriott P et al. Novel dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1(7–36)amide have preserved biological activities in vitro conferring improved glucose-lowering action in vivo. J Mol Endocrinol 2003; 31: 529–540.

    Article  CAS  Google Scholar 

  46. Larsen PJ, Fledelius C, Knudsen LB, Tang-Christensen M . Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes 2001; 50: 2530–2539.

    Article  CAS  Google Scholar 

  47. Rolin B, Larsen MO, Gotfredsen CF, Deacon CF, Carr RD, Wilken M et al. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am J Physiol Endocrinol Metab 2002; 283: E745–E752.

    Article  CAS  Google Scholar 

  48. Larrick JW, Fry KE . Recombinant antibodies. Hum Antibodies Hybridomas 1991; 2: 172–189.

    Article  CAS  Google Scholar 

  49. Hupe-Sodmann K, McGregor GP, Bridenbaugh R, Göke R, Göke B, Thole H et al. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7–36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul Pept 1995; 58: 149–156.

    Article  CAS  Google Scholar 

  50. Fountoulakis M, Mesa C, Schmid G, Gentz R, Manneberg M, Zulauf M et al. Interferon gamma receptor extracellular domain expressed as IgG fusion protein in Chinese hamster ovary cells. Purification, biochemical characterization, and stoichiometry of binding. J Biol Chem 1995; 270: 3958–3964.

    Article  CAS  Google Scholar 

  51. Herberg L, Coleman DL . Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 1977; 26: 59–99.

    Article  CAS  Google Scholar 

  52. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996; 84: 491–495.

    Article  CAS  Google Scholar 

  53. McIntosh CHS, Pederson RA . Nonisnulin-dependent animal models of diabetes mellitus. In: McNeill JH (ed). Experimental Models of Diabetes. CRC Press: Boca Raton, FL, 1999, pp 337–398.

    Google Scholar 

  54. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996; 379: 69–72.

    Article  CAS  Google Scholar 

  55. Weyer C, Bogardus C, Pratley RE . Metabolic characteristics of individuals with impaired fasting glucose and/or impaired glucose tolerance. Diabetes 1999; 48: 2197–2203.

    Article  CAS  Google Scholar 

  56. Turner RC, Cull CA, Frighi V, Holman RR . Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 1999; 281: 2005–2012.

    Article  CAS  Google Scholar 

  57. Schick RR, Zimmermann JP, vorm WT, Schusdziarra V . Peptides that regulate food intake: glucagon-like peptide 1-(7–36) amide acts at lateral and medial hypothalamic sites to suppress feeding in rats. Am J Physiol Regul Integr Comp Physiol 2003; 284: R1427–R1435.

    Article  CAS  Google Scholar 

  58. Lee AY, Chey WY, Choi J, Jeon JS . Insulin-induced drug eruptions and reliability of skin tests. Acta Derm Venereol 2002; 82: 114–117.

    Article  Google Scholar 

  59. Ahangari G, Ostadali MR, Rabani A, Rashidian J, Sanati MH, Zarindast MR et al. Growth hormone antibodies formation in patients treated with recombinant human growth hormone. Int J Immunopathol Pharmacol 2004; 17: 33–38.

    Article  CAS  Google Scholar 

  60. King LB, Monroe JG . Immunobiology of the immature B cell: plasticity in the B-cell antigen receptor-induced response fine tunes negative selection. Immunol Rev 2000; 176: 86–104.

    Article  CAS  Google Scholar 

  61. Ravetch JV, Bolland S . IgG Fc receptors. Annu Rev Immunol 2001; 19: 275–290.

    Article  CAS  Google Scholar 

  62. Takai T . Fc receptors and their role in immune regulation and autoimmunity. J Clin Immunol 2005; 25: 1–18.

    Article  CAS  Google Scholar 

  63. Prud’homme GJ . Altering immune tolerance therapeutically: the power of negative thinking. J Leukoc Biol 2004; 75: 586–599.

    Article  Google Scholar 

  64. Melo MEF, Qian F, El-Amine M, Agarwal RK, Soukhareva N, Kang Y et al. Gene transfer of Ig-fusion proteins into B cells prevents and treats autoimmune diseases. J Immunol 2002; 168: 4788–4795.

    Article  CAS  Google Scholar 

  65. Prinz WA, Aslund F, Holmgren A, Beckwith J . The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 1997; 20: 15661–15667.

    Article  Google Scholar 

  66. Kurland C, Gallant J . Errors of heterologous protein expression. Curr Opin Biotechnol 1996; 7: 489–493.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Institute for Health Research (CIHR, to Q Wang) and the Juvenile Diabetes Research Foundation (JDRF, PI: Q Wang; Co-PI: G Prud’homme). Q Wang is a recipient of a Canadian Diabetes Association Scholarship. M Kumar is a recipient of the Canadian Diabetes Association Fellowship. The authors are grateful to Dr P Doherty (St Michael's Hospital, Toronto, Canada) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Hunag, Y., Glinka, Y. et al. Gene therapy of diabetes using a novel GLP-1/IgG1-Fc fusion construct normalizes glucose levels in db/db mice. Gene Ther 14, 162–172 (2007). https://doi.org/10.1038/sj.gt.3302836

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302836

Keywords

This article is cited by

Search

Quick links