Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

VSV-G pseudotyped, MuLV-based, semi-replication-competent retrovirus for cancer treatment

Abstract

Low levels of gene delivery in vivo using replication-defective retroviral vectors have severely limited their application for clinical protocols. To overcome this problem, we describe here a semi-replication-competent retrovirus (s-RCR) in which the gag-pol and envelope (VSV-G, vesicular stomatitis virus G protein) genes were split into two vectors. This system offers potential advantages over both replication-defective vectors, in terms of efficiency of in vivo spread through a tumor, and all-in-one replication-competent vectors in terms of the payload of therapeutic genes that can be carried. We achieved a viral titer of s-RCR viruses approximately 70-fold higher than VSV-G pseudotyped, replication-defective vectors. In addition, s-RCR vectors induced tumor killing by the cytotoxicity of VSV-G during viral spread. Inclusion of the herpes simplex virus thymidine kinase (HSVtk30) gene into vectors significantly improved tumor killing activity followed by ganciclovir (GCV) treatment in vitro under conditions of low-level viral replication. However, at high levels of viral spread, VSV-G-mediated cytotoxicity predominated. Xenografts of human fibrosarcoma HT1080 cells, preinfected by semi-replicative green fluorescent protein vectors (semi-GFP), were completely non-tumorigenic in nude mice. Implantation of cells preinfected by semi-replicative TK30 vectors (semi-TK30) mixed with parental HT1080 cells at a ratio of 1:1 efficiently prevented tumor growth in mice treated by GCV. Direct intratumoral injection of HT1080 tumors growing in nude mice, or B16 murine melanoma in immunocompetent mice, with semi-TK30 viruses significantly prolonged survival. Injection of autologous cells (B16) producing semi-TK30 vector into B16 tumors prolonged survival only in mice treated with GCV but not with phosphate-buffered saline (PBS). In contrast, when xenogeneic cells (293T) producing semi-TK30 vectors were injected into B16 tumors, an optimal survival advantage was obtained in mice treated with PBS rather than GCV. These data indicate that complex interactions exist between direct cytotoxicity of VSV-G and HSVtk expression when placed in the context of additional immune parameters, which combine to determine the efficacy of the therapy. Taken together, our data suggest that s-RCR vectors have some potential advantages for development to deliver genes into tumors for cancer treatment but that a combination of factors will impact on the decision as to whether the s-RCR strategy is worth developing to full clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK . Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 1993; 90: 8033–8037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Howard BD, Boenicke L, Schniewind B, Henne-Bruns D, Kalthoff H . Transduction of human pancreatic tumor cells with vesicular stomatitis virus G-pseudotyped retroviral vectors containing a herpes simplex virus thymidine kinase mutant gene enhances bystander effects and sensitivity to ganciclovir. Cancer Gene Ther 2000; 7: 927–938.

    Article  CAS  PubMed  Google Scholar 

  3. Lee H, Song JJ, Kim E, Yun CO, Choi J, Lee B et al. Efficient gene transfer of VSV-G pseudotyped retroviral vector to human brain tumor. Gene Therapy 2001; 8: 268–273.

    Article  CAS  PubMed  Google Scholar 

  4. Moolten FL . Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 1986; 46: 5276–5281.

    CAS  PubMed  Google Scholar 

  5. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM . In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992; 256: 1550–1552.

    Article  CAS  PubMed  Google Scholar 

  6. Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL et al. The ‘bystander effect’: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 1993; 53: 5274–5283.

    CAS  PubMed  Google Scholar 

  7. Ram Z, Culver KW, Walbridge S, Blaese RM, Oldfield EH . In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Cancer Res 1993; 53: 83–88.

    CAS  PubMed  Google Scholar 

  8. Caruso M, Panis Y, Gagandeep S, Houssin D, Salzmann JL, Klatzmann D . Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci USA 1993; 90: 7024–7028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ram Z, Culver KW, Oshiro EM, Viola JJ, DeVroom HL, Otto E et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 1997; 3: 1354–1361.

    Article  CAS  PubMed  Google Scholar 

  10. Rainov NG . A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000; 11: 2389–2401.

    Article  CAS  PubMed  Google Scholar 

  11. Beck C, Cayeux S, Lupton SD, Dorken B, Blankenstein T . The thymidine kinase/ganciclovir-mediated ‘suicide’ effect is variable in different tumor cells. Hum Gene Ther 1995; 6: 1525–1530.

    Article  CAS  PubMed  Google Scholar 

  12. Sturtz FG, Waddell K, Shulok J, Chen X, Caruso M, Sanson M et al. Variable efficiency of the thymidine kinase/ganciclovir system in human glioblastoma cell lines: implications for gene therapy. Hum Gene Ther 1997; 8: 1945–1953.

    Article  CAS  PubMed  Google Scholar 

  13. Laird DW, Fistouris P, Batist G, Alpert L, Huynh HT, Carystinos GD et al. Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res 1999; 59: 4104–4110.

    CAS  PubMed  Google Scholar 

  14. Solly SK, Trajcevski S, Frisen C, Holzer GW, Nelson E, Clerc B et al. Replicative retroviral vectors for cancer gene therapy. Cancer Gene Ther 2003; 10: 30–39.

    Article  CAS  PubMed  Google Scholar 

  15. Wang WJ, Tai CK, Kasahara N, Chen TC . Highly efficient and tumor-restricted gene transfer to malignant gliomas by replication-competent retroviral vectors. Hum Gene Ther 2003; 14: 117–127.

    Article  CAS  PubMed  Google Scholar 

  16. Linardakis E, Bateman A, Phan V, Ahmed A, Gough M, Olivier K et al. Enhancing the efficacy of a weak allogeneic melanoma vaccine by viral fusogenic membrane glycoprotein-mediated tumor cell-tumor cell fusion. Cancer Res 2002; 62: 5495–5504.

    CAS  PubMed  Google Scholar 

  17. Eslahi NK, Muller S, Nguyen L, Wilson E, Thull N, Rolland A et al. Fusogenic activity of vesicular stomatitis virus glycoprotein plasmid in tumors as an enhancer of IL-12 gene therapy. Cancer Gene Ther 2001; 8: 55–62.

    Article  CAS  PubMed  Google Scholar 

  18. Phan V, Errington F, Cheong SC, Kottke T, Gough M, Altmann S et al. A new genetic method to generate and isolate small, short-lived but highly potent dendritic cell–tumor cell hybrid vaccines. Nat Med 2003; 9: 1215–1219.

    Article  CAS  PubMed  Google Scholar 

  19. Riviere I, Brose K, Mulligan RC . Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc Natl Acad Sci USA 1995; 92: 6733–6737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiao J, Roy V, Girard MH, Caruso M . High translation efficiency is mediated by the encephalomyocarditis virus internal ribosomal entry sites if the natural sequence surrounding the eleventh AUG is retained. Hum Gene Ther 2002; 13: 881–887.

    Article  CAS  PubMed  Google Scholar 

  21. Yee JK, Miyanohara A, LaPorte P, Bouic K, Burns JC, Friedmann T . A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci USA 1994; 91: 9564–9568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Germain E, Roullin VG, Qiao J, de Campos Lima PO, Caruso M . RD114-pseudotyped retroviral vectors kill cancer cells by syncytium formation and enhance the cytotoxic effect of the TK/GCV gene therapy strategy. J Gene Med 2004; 7: 389–397.

    Article  Google Scholar 

  23. Logg CR, Logg A, Tai CK, Cannon PM, Kasahara N . Genomic stability of murine leukemia viruses containing insertions at the Env-3′ untranslated region boundary. J Virol 2001; 75: 6989–6998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stripecke R, Carmen Villacres M, Skelton D, Satake N, Halene S, Kohn D . Immune response to green fluorescent protein: implications for gene therapy. Gene Therapy 1999; 6: 1305–1312.

    Article  CAS  PubMed  Google Scholar 

  25. Bubnic SJ, Nagy A, Keating A . Donor hematopoietic cells from tansgenic mice that express GFP are immunogenic in immunocompetent recipients. Hematology 2005; 10: 289–295.

    Article  CAS  PubMed  Google Scholar 

  26. Vile RG, Hart IR . Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res 1993; 53: 3860–3864.

    CAS  PubMed  Google Scholar 

  27. Sliva K, Erlwein O, Bittner A, Schnierle BS . Murine leukemia virus (MLV) replication monitored with fluorescent proteins. Virol J 2004; 1: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  PubMed  Google Scholar 

  29. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  30. Qiao J, Diaz RM, Vile RG . Success for gene therapy: render unto Caesar that which is Caesar's. Genome Biol 2004; 5: 237.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Trajcevski S, Solly SK, Frisen C, Trenado A, Cosset FL, Klatzmann D . Characterization of a semi-replicative gene delivery system allowing propagation of complementary defective retroviral vectors. J Gene Med 2005; 7: 276–287.

    Article  CAS  PubMed  Google Scholar 

  32. Logg CR, Tai CK, Logg A, Anderson WF, Kasahara N . A uniquely stable replication-competent retrovirus vector achieves efficient gene delivery in vitro and in solid tumors. Hum Gene Ther 2001; 12: 921–932.

    Article  CAS  PubMed  Google Scholar 

  33. Vogt B, Roscher S, Abel B, Hildinger M, Lamarre A, Baum C et al. Lack of superinfection interference in retroviral vector producer cells. Hum Gene Ther 2001; 12: 359–365.

    Article  CAS  PubMed  Google Scholar 

  34. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    CAS  PubMed  Google Scholar 

  35. Mineta T, Rabkin SD, Martuza RL . Treatment of malignant gliomas using ganciclovir-hypersensitive, ribonucleotide reductase-deficient herpes simplex viral mutant. Cancer Res 1994; 54: 3963–3966.

    CAS  PubMed  Google Scholar 

  36. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000; 6: 821–825.

    Article  CAS  PubMed  Google Scholar 

  37. Coffey MC, Strong JE, Forsyth PA, Lee PW . Reovirus therapy of tumors with activated Ras pathway. Science 1998; 282: 1332–1334.

    Article  CAS  PubMed  Google Scholar 

  38. Cosset FL, Takeuchi Y, Battini JL, Weiss RA, Collins MK . High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 1995; 69: 7430–7436.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Black ME, Newcomb TG, Wilson HM, Loeb LA . Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci USA 1996; 93: 3525–3529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qiao J, Black ME, Caruso M . Enhanced ganciclovir killing and bystander effect of human tumor cells transduced with a retroviral vector carrying a herpes simplex virus thymidine kinase gene mutant. Hum Gene Ther 2000; 11: 1569–1576.

    Article  CAS  PubMed  Google Scholar 

  41. Qiao J, Caruso M . PG13 packaging cells produce recombinant retroviruses carrying a diphtheria toxin mutant which kills cancer cells. J Virol 2002; 76: 7343–7348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Altman DG . Analysis of survival times. In: Practical Statistics for Medical Research 1991: Chapman and Hall: London, pp 365–395.

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Mayo Foundation, the Susan G Komen Breast Cancer Foundation and the National Institutes of Health (CA 85931). We thank Toni L Higgins for secretarial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Vile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, J., Moreno, J., Sanchez-Perez, L. et al. VSV-G pseudotyped, MuLV-based, semi-replication-competent retrovirus for cancer treatment. Gene Ther 13, 1457–1470 (2006). https://doi.org/10.1038/sj.gt.3302782

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302782

Keywords

This article is cited by

Search

Quick links