Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A multifunctional PEI-based cationic polyplex for enhanced systemic p53-mediated gene therapy

Abstract

We recently reported a novel coupling strategy involving salicylhydroxamic acid and phenyl(di)boronic acid molecules to attach the CNGRC peptide to PEI/DNA for CD13 targeting in tumors. Here, we doubly coupled Simian Virus (SV) 40 peptide-(nuclear localization signal)) and oligonucleotide-based (DNA nuclear targeting signal) nuclear signals to the same vector using peptide nucleic acid chemistry. This vector, CNGRC/PEG/PEI/DNA-βgal/NLS/DNTS, was predominantly localized in the cell nucleus, yielding about 200-fold higher βgal gene expression in vitro, more than 20-fold increase in tumor-specific gene delivery, and a robust βgal gene expression as demonstrated in stained tumor sections. For gene therapy purposes, we further engineered a similar targeting polyplex, CNGRC/PEG/PEI/DNA-p53/NLS/DNTS, with EBV-based episomal vector for sustained p53 gene expression. A distribution of vector DNA and apoptosis in p53-containing tumors was observed, yielding a significant tumor regression and 95% animal survival after 60 days. This multicomponent vector also co-targeted tumor and tumor-associated endothelial cells but not normal cells, and had more efficient therapeutic index than each vector administered as a single modality. The use of an efficient coupling strategy without compromising the vector's integrity for DNA condensation and endosomal escape; nuclear import; tumor-specific and persistent p53 gene expression clearly provides a basis for developing a single combinatorial approach for non-viral gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sweeney P, Karashima T, Ishikura H, Wiehle S, Yamashita M, Benedict W et al. Efficient therapeutic gene delivery after systemic administration of a novel polyethylenimine/DNA vector in an orthotopic bladder cancer model. Cancer Res 2003; 63: 4017–4020.

    CAS  PubMed  Google Scholar 

  2. Moffatt S, Wiehle S, Cristiano RJ . Tumor-specific gene delivery mediated by a novel peptide/polyethylenimene/DNA polyplex targeting aminopeptidase N (CD13). Hum Gene Ther 2005; 16: 57–67.

    Article  CAS  PubMed  Google Scholar 

  3. Wu CH, Wilson JM, Wu GY . Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo. J Biol Chem 1989; 264: 16985–16987.

    CAS  PubMed  Google Scholar 

  4. Branden LJ, Mohamed AJ, Smith CIE . A peptide nucleic acid nuclear localization signal fusion that mediates nuclear transport of DNA. Nat Biotechnol 1999; 17: 784–7871.

    Article  CAS  PubMed  Google Scholar 

  5. Chan CK, Jans DA . Enhancement of polylysine-mediated transfer infection by nuclear localization sequences: polylysine does not function as a nuclear localization sequence. Hum Gene Ther 1999; 10: 1695–1702.

    Article  CAS  PubMed  Google Scholar 

  6. Zanta MA, Belguise-Valladier P, Behr JP . Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA 1999; 96: 91–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Colin M, Maurice M, Trugnan G, Kornprobst M, Harbottle RP, Knight A et al. Cell delivery, intracellular trafficking and expression of an integrin-mediated gene transfer vector in tracheal epithelial cells. Gene Therapy 2000; 7: 139–152.

    Article  CAS  PubMed  Google Scholar 

  8. James MB, Giorgio TD . Nuclear-associated plasmid, but not cell-associated plasmid, is correlated with transgene expression in cultured mammalian cell. Mol Ther 2000; 1: 339–346.

    Article  CAS  PubMed  Google Scholar 

  9. Collas P, Alestrom P . Rapid targeting of plasmid DNA to zebrafish embryo nuclei by the nuclear localization signal of SV 40T antigen. Mol Marine Biol Biotechnol 1997; 6: 48–58.

    CAS  Google Scholar 

  10. Dean DA . Import of plasmid into the nucleus is sequence specific. Exp Cell Res 1997; 230: 293–302.

    Article  CAS  PubMed  Google Scholar 

  11. Escriou V, Ciolina C, Helbling-Leclerc A, Wils P, Scherman D . Cationic lipid-mediated gene transfer uptake and nuclear import of plasmid DNA. Cell Biol Toxicol 1998; 14: 95–104.

    Article  CAS  PubMed  Google Scholar 

  12. Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D et al. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 1998; 27: 7507–7511.

    Article  Google Scholar 

  13. Dean DA, Byrd JN, Dean BS . Nuclear targeting of plasmid DNA in human corneal cells. Cell Biol Toxicol 1999; 19: 66–75.

    CAS  Google Scholar 

  14. Neves C, Escriou V, Byk G, Scherman D, Wils P . Intracellular fate and nuclear targeting of plasmid DNA. Cell Biol Toxicol 1999; 15: 193–202.

    Article  CAS  PubMed  Google Scholar 

  15. Hagstrom JE, Ludtke JJ, Bassik MC, Sebestyen MG, Adam SA, Wolff JA . Nuclear import of DNA in digitonin-permeabilized cells. J Cell Sci 1997; 110: 2323–2331.

    CAS  PubMed  Google Scholar 

  16. Hartig R, Shoeman RL, Janetzko A, Grub S, Traub P . Active nuclear import of single-stranded oligonucleotides and their complexes with non-karyophilic macromolecules. Biol Cell 1998; 90: 407–426.

    Article  CAS  PubMed  Google Scholar 

  17. Sebestyen MG, Ludtke JJ, Bassik MC, Zhang G, Budker V, Lukhtanov EA et al. DNA vector chemistry: the covalent attachment of signal peptide to plasmid DNA. Nat Biotechnol 1998; 16: 80–85.

    Article  CAS  PubMed  Google Scholar 

  18. Vacik J, Dean BS, Zimmer WE, Dean DA . Cell-specific nuclear import of plasmid DNA. Gene Therapy 1999; 6: 1006–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brown MD, Schatzlein AG, Uchegbu IF . Gene delivery with synthetic (non-viral) carriers. Int J Pharm 2001; 229: 1–21.

    Article  CAS  PubMed  Google Scholar 

  20. Bremner KH, Seymour LW, Logan A, Read ML . Factors influencing the ability of nuclear localization sequence peptides to enhance non-viral gene delivery. Bioconjugate Chem 2004; 15: 152–161.

    Article  CAS  Google Scholar 

  21. Ludtke JJ, Zhang G, Sebestyen MG, Wolff JA . A nuclear localization signal can enhance both the nuclear transport and expression of 1 Kb DNA. J Cell Sci 2003; 112: 2033–2041.

    Google Scholar 

  22. Kalderon D, Richardson WD, Markham AF, Smith AE . Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 1984; 311: 33–38.

    Article  CAS  PubMed  Google Scholar 

  23. Tanimoto M, Kamiya N, Matsuda A . No enhancement of nuclear entry by direct conjugation of a nuclear localization signal peptide to linearized DNA. Bioconjugate Chem 2003; 14: 1197–1202.

    Article  CAS  Google Scholar 

  24. Nielsen PE, Egholm M, Berg RH, Buchardt O . Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 2001; 254: 1497–1500.

    Article  Google Scholar 

  25. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA et al. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-binding rules. Nature 1993; 365: 566–568.

    Article  CAS  PubMed  Google Scholar 

  26. Haahr-Hansen MH, Sode LL, Hyldig-Nielsen JJ, Engberg J . Detection of PNA/DNA hybrid molecules by antibody Fab fragments isolated from a phage display library. J Immunol Methods 1997; 203: 199–207.

    Article  CAS  PubMed  Google Scholar 

  27. Misra HS, Pandey PK, Modak MJ, Vinayak R, Pandey VN . Polyamide nucleic acid-DNA chimera lacking the phosphate backbone are novel primers for polymerase reaction catalyzed by DNA polymerases. Biochemistry 1998; 37: 1917–1925.

    Article  CAS  PubMed  Google Scholar 

  28. Gambari R . Peptide nucleic acids: a tool for the development of gene expression modifiers. Curr Pharm Des 1991; 7: 1839–1862.

    Google Scholar 

  29. Roulon T, Helene C, Escude C . Coupling of a targeting peptide to plasmid DNA using a new type of padlock oligonucleotide. Bioconjugate Chem 2002; 13: 1134–1139.

    Article  CAS  Google Scholar 

  30. Gottschalk S, Cristiano RJ, Smith L, Woo SLC . Folate receptor-mediated gene delivery into tumor cells: potosomal disruption results in enhanced gene expression. Gene Therapy 1994; 1: 185–191.

    CAS  PubMed  Google Scholar 

  31. Wagner E, Zenke M, Cotton M, Beug H, Birnstiel ML . Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc Natl Acad Sci USA 1990; 87: 3410–3414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Young JL, Benoit JN, Dean DA . Effect of DNA nuclear targeting sequence on gene transfer and expression of plasmids in the intact vasculature. Gene Therapy 2003; 10: 1465–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA . A powerful non viral vector for in vivo gene transfer into the adult mammalian brain: polyethylenmine. Hum Gene Ther 1996; 7: 1947–1954.

    Article  CAS  PubMed  Google Scholar 

  34. Arap W, Pasqualini R, Ruoslahti E . Cancer treatment by targeted delivery to tumor vasculature in a mouse model. Science 1998; 279: 377–380.

    Article  CAS  PubMed  Google Scholar 

  35. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A et al. Aminopeptidase N is a receptor for tumor-specific peptides and a target for inhibiting angiogenesis. Cancer Res 2000; 60: 722–727.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ellerby HM, Arap W, Ellerby M, Kain R, Andrusiak R, Rio GD et al. Anti-cancer activities of targeted pro-apoptotic peptides. Nat Med 1999; 5: 1032–1038.

    Article  CAS  PubMed  Google Scholar 

  37. Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995; 92: 7297–7301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Keller M, Harbottle RP, Perouzel E, Colin M, Shah I, Rahim A et al. Nuclear localization sequence templated non-viral gene delivery vectors: investigation of intracellular trafficking events of LMD and LD vector systems. Chem Biochem 2003; 4: 286–298.

    CAS  Google Scholar 

  39. Ferkol T, Pellicena-Palle A, Eckman E, Perales JC, Trzaska T, Tosi M et al. Immunologic responses of gene transfer into mice via the polymeric immunoglobulin receptor. Gene Therapy 1996; 3: 669–678.

    CAS  PubMed  Google Scholar 

  40. Mulligan RC . The basic science of gene therapy. Science 1993; 260: 926–932.

    Article  CAS  PubMed  Google Scholar 

  41. Kozarsky JF, Wilson JM . Gene therapy: adenovirus vectors. Curr Opin Genet Dev 1993; 3: 499–503.

    Article  CAS  PubMed  Google Scholar 

  42. Jiao S, Williams P, Berg RG, Hodgeman BA, Liu L, Repetto G et al. Direct gene transfer into nonhuman primate myofibers in vivo. Hum Gene Ther 1992; 3: 21–33.

    Article  CAS  PubMed  Google Scholar 

  43. Krygier S, Djakiew D . Neurotrophin receptor p75(NTR) suppresses growth and nerve growth factor-mediated metastasis of human prostate cancer cells. Int J Cancer 2002; 98: 1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Randall Evans (Department of Molecular Hematology and Therapy) of the Flow Cytometry/Cell Sorting and Confocal Microscope/Image Analysis Core of the University of Texas MD Anderson Cancer Center for his invaluable technical assistance in confocal microscopy. This work was supported in part by NIH grant #5P30CA016672–29 supporting the core facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Moffatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moffatt, S., Wiehle, S. & Cristiano, R. A multifunctional PEI-based cationic polyplex for enhanced systemic p53-mediated gene therapy. Gene Ther 13, 1512–1523 (2006). https://doi.org/10.1038/sj.gt.3302773

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302773

Keywords

This article is cited by

Search

Quick links