Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ring-Sp1 decoy oligonucleotide effectively suppresses extracellular matrix gene expression and fibrosis of rat kidney induced by unilateral ureteral obstruction

Abstract

Tubulointerstitial fibrosis is the consequence of an injury characterized by the accumulation of excess collagen and other extracellular matrix components, resulting in the destruction of the normal kidney architecture and subsequent loss of function. A transcription factor Sp1, originally described as a ubiquitous transcription factor, is involved in the basal expression of extracelluar matrix genes and may, therefore, be important in fibrotic processes. Here, we report on the design of a ring-Sp1 decoy oligonucleotide, containing the consensus Sp1 binding sequence in a single decoy molecule without an open end, to create a novel therapeutic strategy for fibrosis. The ring-Sp1 decoy oligonucleotide is highly resistant to degradation by nucleases or serum compared to the conventional phosphorothioated double-stranded Sp1 decoy oligonucleotide, and effectively suppressed the expression of transforming growth factor-β1 and fibronectin, the binding of Sp1 to the promoter region of these genes, and proliferation in response to serum in normal rat kidney fibroblasts. Moreover, treatment with the ring-Sp1 decoy in vivo significantly attenuates extracellular matrix gene expression in the rat kidney in which a unilateral ureteral obstruction had been induced. These results suggest that the ring-Sp1 decoy oligonucleotide represents promising therapeutic alternative to the conventional treatment of fibrotic disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

ECM:

extracellular matrix

FN:

fibronectin

GAPDH:

glyceraldehydes-3-phosphate dehydrogenase

HVJ:

hemagglutinating virus of Japan

M-Sp1 decoy:

mutated Sp1 decoy

ODN:

oligodeoxynucleotide

PBS:

phophate buffered saline

PS-Sp1 decoy:

phosphorothioate Sp1 decoy

α-SMA:

α-smooth muscle actin

SSC:

standard saline citrate

R-Sp1 decoy:

ring Sp1 decoy

TGF-β1:

transforming growth factor-β1

TNF-α:

tumore necrosis factor-α

uPA:

urokinase-type plasminogen activator

UUO:

unilateral ureteral obstruction

VEGF:

vascular endothelial growth factor.

References

  1. Klahr S, Morrissey JJ . The role of vasoactive compounds, growth factors and cytokines in the progression of renal disease. Kidney Int suppl 2000; 75: 7–14.

    Article  Google Scholar 

  2. Nath KA . Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 1992; 20: 1–17.

    Article  CAS  PubMed  Google Scholar 

  3. Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE et al. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 1995; 130: 393–405.

    Article  CAS  PubMed  Google Scholar 

  4. Border WA, Noble NA . Transforming growth factor beta in tissue fibrosis. N Engl J Med 1994; 331: 1286–1292.

    Article  CAS  PubMed  Google Scholar 

  5. Bottinger EP, Letterio JJ, Roberts AB . Biology of TGF-beta in knockout and transgenic mouse models. Kidney Int 1997; 51: 1355–1360.

    Article  CAS  PubMed  Google Scholar 

  6. Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ et al. Expression of connective tissue growth factor in human renal fibrosis. Kidney Int 1998; 53: 853–861.

    Article  CAS  PubMed  Google Scholar 

  7. Smith EA, LeRoy EC . A possible role for transforming growth factor-beta in systemic sclerosis. J Invest Dermatol 1990; 95: 125S–127S.

    Article  CAS  PubMed  Google Scholar 

  8. Quaglino DJ, Nanney LB, Ditesheim JA, Davidson JM . Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin: incisional wound model. J Invest Dermatol 1991; 97: 34–42.

    CAS  PubMed  Google Scholar 

  9. Roberts AB, Sporn MB . A major advance in the use of growth factors to enhance wound healing. J Am Soc Nephrol 1993; 8: 1–9.

    CAS  Google Scholar 

  10. Basile DP . The transforming growth factor beta system in kidney disease and repair: recent progress and future directions. Curr Opin Nephrol Hypertens 1996; 8: 21–30.

    Article  Google Scholar 

  11. Klahr S, Morrissey J . Obstructive nephropathy and renal fibrosis: the role of bone morphogenic protein-7 and hepatocyte growth factor. Kidney Int Suppl 2003; 87: S105–S112.

    Article  CAS  Google Scholar 

  12. Eddy AA . Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 1996; 7: 2495–2508.

    CAS  PubMed  Google Scholar 

  13. Cook T, Gebelein B, Urrutia R . Three conserved transcriptional repressor domains are a defining feature of the TIEG subfamily of Sp1-like zinc finger proteins. Ann NY Acad Sci 1999; 880: 94–102.

    Article  CAS  PubMed  Google Scholar 

  14. Goldberg HJ, Scholey J, Fantus IG . Glucosamine activates the plasminogen activator inhibitor 1 gene promoter through Sp1 DNA binding sites in glomerular mesangial cells. Diabetes 2000; 49: 863–871.

    Article  CAS  PubMed  Google Scholar 

  15. Lai A, Lee JM, Yang WM, Decaprio JA, Kaelin Jr WG, Seto E et al. RBP1 Recruits both histone deacetylase-dependent and independent repression activities to retinoblastoma family proteins. Mol Cell Biol 1999; 19: 6632–6641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farabaugh PJ, Vimaladitha A, Turkel S, Johnson R, Zhao H . Three downstream sites repress transcription of a Ty2 retrotransposon in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13: 2081–2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin SY, Black AR, Kostic D, Pajovic S, Hoover CN, Azizkhan JC . Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol Cell Biol 1996; 16: 1668–1675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karlseder J, Rotheneder H, Wintersberger E . Interaction of Sp1 with the growth- and cell cycle-regulated transcription factor E2F. Mol Cell Biol 1996; 16: 1659–1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang YC, Illenye S, Heintz NH . Cooperation of E2F-p130 and Sp1-pRb Complexes in Repression of the Chinese Hamster dhfr Gene. Mol Cell Biol 2001; 21: 1121–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park KK, Rue SW, Lee IS, Kim HC, Lee IK, Ahn JD et al. Modulation of Sp1-dependent transcription by a cis-acting E2F element in dhfr promoter. Biochem Biophys Res Commun 2003; 306: 239–243.

    Article  CAS  PubMed  Google Scholar 

  21. Kim SJ, Qnwuta US, Lee YI, Li R, Botchan MR, Robbins PD . The retinoblastoma gene product regulates Sp1-mediated transcription. Mol Cell Biol 1992; 12: 2455–2463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Udvadia AJ, Rogers KT, Higgins PD, Murata Y, Martin KH, Humphrey PA et al. Sp-1 binds promoter elements regulated by the RB protein and Sp-1-mediated transcription is stimulated by RB coexpression. Proc Natl Acad Sci USA 1993; 90: 3265–3269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Udvadia AJ, Templeton DJ, Horowitz JM . Functional interactions between the retinoblastoma (Rb) protein and Sp-family members: superactivation by Rb requires amino acids necessary for growth suppression. Proc Nat Acad Sci USA 1995; 92: 3953–3957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Holmgren L, O’Reilly MS, Folkman J . Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1995; 1: 149–153.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Li Y, Dai C, Yang J, Mundel P, Liu Y . Sp1 and Sp3 transcription factors synergistically regulate HGF receptor gene expression in kidney. Am J Physiol Renal Physiol 2003; 284: 82–94.

    Article  Google Scholar 

  26. Geiser AG, Busan KJ, Kim SJ, Lafyatis R, O’Reilly MA, Webbink R et al. Regulation of the transforming growth factor-beta 1 and -beta 3 promoters by transcription factor Sp1. Gene 1993; 129: 223–228.

    Article  CAS  PubMed  Google Scholar 

  27. Nehls MC, Brenner DA, Gruss HJ, Dierbach H, Mertelsmann R, Herrmanna F . Mithramycin selectively inhibits collagen-alpha 1(I) gene expression in human fibroblast. J Clin Invest 1993; 92: 2916–2921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hata Y, Duh E, Zhang K, Robinson GS, Aiello LP . Transcription factors Sp1 and Sp3 alter vascular endothelial growth factor receptor expression through a novel recognition sequence. J Biol Chem 1998; 273: 19294–19303.

    Article  CAS  PubMed  Google Scholar 

  29. Ishibashi H, Nakagawa K, Onimaru M, Castellanous EJ, Kaneda Y, Nakashima Y et al. Sp1 decoy transfected to carcinoma cells suppresses the expression of vascular endothelial growth factor, transforming growth factor beta1, and tissue factor and also cell growth and invasion activities. Cancer Res 2000; 60: 6531–6536.

    CAS  PubMed  Google Scholar 

  30. Liang F, Schaufele F, Gardner DG . Sp1 dependence of natriuretic peptide receptor A gene transcription in rat aortic smooth muscle cells. Endocrinology 1999; 140: 1695–1701.

    Article  CAS  PubMed  Google Scholar 

  31. Motojima M, Ando T, Yoshioka T . Sp1-like activity mediates angiotensin-II-induced plasminogen-activator inhibitor type-1 (PAI-1) gene expression in mesangial cells. Biochem J 2000; 349: 435–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Verrecchia F, Rossert J, Mauviel A . Blocking sp1 transcription factor broadly inhibits extracellular matrix gene expression in vitro and in vivo: implications for the treatment of tissue fibrosis. J Invest Dermatol 2001; 116: 755–763.

    Article  CAS  PubMed  Google Scholar 

  33. Yu JH, Schwartzbauer G, Kazlman A, Menon RK . Role of the Sp family of transcription factors in the ontogeny of growth hormone receptor gene expression. J Biol Chem 1999; 274: 34327–34336.

    Article  CAS  PubMed  Google Scholar 

  34. Yamashita J, Yoshimasa T, Arai H, Hiraoka J, Takaya K, Miyamoto Y et al. Identification of cis-elements of the human endothelin-A receptor gene and inhibition of the gene expression by the decoy strategy. J Biol Chem 1998; 273: 15993–15999.

    Article  CAS  PubMed  Google Scholar 

  35. Kawauchi M, Suzuki J, Morishita R, Wada Y, Izawa A, Tomita N et al. Gene therapy for attenuating cardiac allograft arteriopathy using ex vivo E2F decoy transfection by HVJ-AVE-liposome method in mice and nonhuman primates. Circ Res 2000; 87: 1063–1068.

    Article  CAS  PubMed  Google Scholar 

  36. Yamashita J, Yoshimasa T, Arai H, Hiraoka J, Takaya K, Miyamoto Y et al. Identification of cis-elements of the human endothelin-A receptor gene and inhibition of the gene expression by the decoy strategy. J Biol Chem 1998; 273: 15993–15999.

    Article  CAS  PubMed  Google Scholar 

  37. Ahn JD, Morishita R, Kaneda Y, Lee SJ, Kwon KY, Choi SY et al. Inhibitory effects of novel AP-1 decoy oligodeoxynucleotides on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo. Circ Res 2002; 90: 1325–1332.

    Article  CAS  PubMed  Google Scholar 

  38. Ahn JD, Kim CH, Magae J, Kim YH, Kim HJ, Park KK et al. E2F decoy oligodeoxynucleotides effectively inhibit growth of human tumor cells. Biochem Biophys Res Commun 2003; 310: 1048–1053.

    Article  CAS  PubMed  Google Scholar 

  39. Chae YM, Park KK, Magae J, Lee IS, Kim CH, Kim HC et al. Sp1-decoy oligodeoxynucleotide inhibits high glucose-induced mesangial cell proliferation. Biochem Biophys Res Commun 2004; 319: 550–555.

    Article  CAS  PubMed  Google Scholar 

  40. Kaneda Y, Nakajima T, Nishikawa T, Yamamoto S, Ikegami H, Suzuki N et al. Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol Ther 2002; 6: 219–226.

    Article  CAS  PubMed  Google Scholar 

  41. Kim Y, Ratziu V, Choi SG, Lalazar A, Theiss G, Dang Q et al. Transcriptional activation of transforming growth factor β1 and its receptors by the kruppel-like Factor Zf9/core rromoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem 1998; 273: 33750–33758.

    Article  CAS  PubMed  Google Scholar 

  42. Poncelet AC, Schnaper HW . Sp1 and smad proteins cooperate to mediate transforming growth factor-β1-induced alpha2(I) collagen expression in human glomerular mesangial cells. J Biol Chem 2001; 276: 6983–6992.

    Article  CAS  PubMed  Google Scholar 

  43. Datta PK, Blake MC, Moses HL . Regulation of plasminogen activator inhibitor-1 expression by transforming growth factor-β-induced physical and functional interactions between smads and Sp1. J Biol Chem 2000; 275: 40014–40019.

    Article  CAS  PubMed  Google Scholar 

  44. Slansky JE, Li Y, Kaelin WG, Farnham PJ . A protein synthesis-dependent increase in E2F1 mRNA correlates with growth regulation of the dihydrofolate reductase promoter. Mol Cell Biol 1993; 13: 1610–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ahn JD, Morishita R, Kaneda Y, Kim HJ, Kim YD, Lee HJ et al. Transcription factor decoy for AP-1 reduces mesangial cell proliferation and extracellular matrix production in vitro and in vivo. Gene Therapy 2004; 11: 916–923.

    Article  CAS  PubMed  Google Scholar 

  46. Maruyama H, Higuchi N, Nishikawa Y, Hirahara H, Iino N, Kameda S et al. Kidney-targeted naked DNA transfer by retrograde renal vein injection in rats. Hum Gene Ther 2002; 13: 455–468.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the MRC for Cardiovascular Diseases and Natural products, Dongguk University (2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-C Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chae, YM., Park, KK., Lee, IK. et al. Ring-Sp1 decoy oligonucleotide effectively suppresses extracellular matrix gene expression and fibrosis of rat kidney induced by unilateral ureteral obstruction. Gene Ther 13, 430–439 (2006). https://doi.org/10.1038/sj.gt.3302696

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302696

Keywords

This article is cited by

Search

Quick links