Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Liver-directed gene therapy of diabetic rats using an HVJ-E vector containing EBV plasmids expressing insulin and GLUT 2 transporter

Abstract

Insulin gene therapy in clinical medicine is currently hampered by the inability to regulate insulin secretion in a physiological manner, the inefficiency with which the gene is delivered, and the short duration of gene expression. To address these issues, we injected the liver of streptozotocin-induced diabetic rats with hemagglutinating virus of Japan-envelope (HVJ-E) vectors containing Epstein–Barr virus (EBV) plasmids encoding the genes for insulin and the GLUT 2 transporter. Efficient delivery of the genes was achieved with the HVJ-E vector, and the use of the EBV replicon vector led to prolonged hepatic gene expression. Blood glucose levels were normalized for at least 3 weeks as a result of the gene therapy. Cotransfection of GLUT 2 with insulin permitted the diabetic rats to regulate their blood glucose levels upon exogenous glucose loading in a physiologically appropriate manner and improved postprandial glucose levels. Moreover, cotransfection with insulin and GLUT 2 genes led to in vitro glucose-stimulated insulin secretion that involved the closure of KATP channels. The present study represents a new way to efficiently deliver insulin gene in vivo that is regulated by ambient glucose level with prolonged gene expression. This may provide a basis to overcome limitations of insulin gene therapy in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Miller AD . Human gene therapy comes of age. Nature 1992; 357: 455–460.

    Article  CAS  PubMed  Google Scholar 

  2. Thompson L . At age 2, gene therapy enters a growth phase. Science 1992; 258: 744–746.

    Article  CAS  PubMed  Google Scholar 

  3. Hollingsworth SJ, Barker SG . Gene therapy: into the future of surgery. Lancet 1999; 353 (Suppl): SI19–SI20.

    Article  PubMed  Google Scholar 

  4. Yoon JW, Jun HS . Recent advances in insulin gene therapy for type 1 diabetes. Trends Mol Med 2002; 8: 62–68.

    Article  CAS  PubMed  Google Scholar 

  5. Yechoor V, Chan L . Gene therapy progress and prospects: gene therapy for diabetes mellitus. Gene Therapy 2004; 12: 101–107.

    Article  Google Scholar 

  6. Lee HC, Kim SJ, Kim KS, Shin HC, Yoon JW . Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue. Nature 2000; 408: 483–488.

    Article  CAS  PubMed  Google Scholar 

  7. Chen R, Meseck ML, Woo SL . Auto-regulated hepatic insulin gene expression in type 1 diabetic rats. Mol Ther 2001; 3: 584–590.

    Article  CAS  PubMed  Google Scholar 

  8. Mitanchez D, Chen R, Massias JF, Porteu A, Mignon A, Bertagna X et al. Regulated expression of mature human insulin in the liver of transgenic mice. FEBS Lett 1998; 421: 285–289.

    Article  CAS  PubMed  Google Scholar 

  9. Liu GJ, Simpson AM, Swan MA, Tao C, Tuch BE, Crawford RM et al. ATP-sensitive potassium channels induced in liver cells after transfection with insulin cDNA and the GLUT 2 transporter regulate glucose-stimulated insulin secretion. FASEB J 2003; 17: 1682–1684.

    Article  CAS  PubMed  Google Scholar 

  10. Min KA, Oh ST, Yoon KH, Kim CK, Lee SK . Prolonged gene expression in primary porcine pancreatic cells using an Epstein–Barr virus-based episomal vector. Biochem Biophys Res Commun 2003; 305: 108–115.

    Article  CAS  PubMed  Google Scholar 

  11. Saeki Y, Wataya-Kaneda M, Tanaka K, Kaneda Y . Sustained transgene expression in vitro and in vivo using an Epstein–Barr virus replicon vector system combined with HVJ liposomes. Gene Therapy 1998; 5: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  12. Tsujie M, Isaka Y, Nakamura H, Kaneda Y, Imai E, Hori M . Prolonged transgene expression in glomeruli using an EBV replicon vector system combined with HVJ liposomes. Kidney Int 2001; 59: 1390–1396.

    Article  CAS  PubMed  Google Scholar 

  13. Lupton S, Levine AJ . Mapping genetic elements of Epstein–Barr virus that facilitate extrachromosomal persistence of Epstein–Barr virus-derived plasmids in human cells. Mol Cell Biol 1985; 5: 2533–2542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yates JL, Warren N, Sugden B . Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature 1985; 313: 812–815.

    Article  CAS  PubMed  Google Scholar 

  15. Wu H, Kapoor P, Frappier L . Separation of the DNA replication, segregation, transcriptional activation functions of Epstein–Barr nuclear antigen 1. J Virol 2002; 76: 2480–2490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ilan Y, Saito H, Thummala NR, Chowdhury NR . Adenovirus-mediated gene therapy of liver diseases. Semin Liver Dis 1999; 19: 49–59.

    Article  CAS  PubMed  Google Scholar 

  17. Muruve DA, Barnes MJ, Stillman IE, Libermann TA . Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther 1999; 10: 965–976.

    Article  CAS  PubMed  Google Scholar 

  18. Park YM, Woo S, Lee GT, Ko JY, Lee Y, Zhao ZS et al. Safety and efficacy of adeno-associated viral vector-mediated insulin gene transfer via portal vein to the livers of streptozotocin-induced diabetic Sprague–Dawley rats. J Gene Med 2005; 7: 621–629.

    Article  CAS  PubMed  Google Scholar 

  19. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33–40.

    Article  CAS  PubMed  Google Scholar 

  20. Russell DW, Kay MA . Adeno-associated virus vectors and haematology. Blood 1999; 94: 864–874.

    CAS  PubMed  Google Scholar 

  21. Mulligan RC . The basic science of gene therapy. Science 1993; 260: 926–932.

    Article  CAS  PubMed  Google Scholar 

  22. Dzau VJ, Mann MJ, Morishita R, Kaneda Y . Fusigenic viral liposome for gene therapy in cardiovascular diseases. Proc Natl Acad Sci USA 1996; 93: 11421–11425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ahn JD, Morishita R, Kaneda Y, Kim HS, Chang YC, Lee KU et al. Novel E2F decoy oligodeoxynucleotides inhibit in vitro vascular smooth muscle cell proliferation and in vivo neointimal hyperplasia. Gene Therapy 2002; 9: 1682–1692.

    Article  CAS  PubMed  Google Scholar 

  24. Ahn JD, Morishita R, Kaneda Y, Kim HJ, Kim YD, Lee HJ et al. Transcription factor decoy for AP-1 reduces mesangial cell proliferation and extracellular matrix production in vitro and in vivo. Gene Therapy 2004; 11: 916–923.

    Article  CAS  PubMed  Google Scholar 

  25. Morishita R, Gibbons GH, Kaneda Y, Ogihara T, Dzau VJ . Systemic administration of HVJ viral coat-liposome complex containing human insulin vector decreases glucose level in diabetic mouse: a model of gene therapy. Biochem Biophys Res Commun 2000; 273: 666–674.

    Article  CAS  PubMed  Google Scholar 

  26. Kaneda Y, Nakajima T, Nishikawa T, Yamamoto S, Ikegami H, Suzuki N et al. Hemagglutinating virus of Japan (HVJ) envelope vector as a versatile gene delivery system. Mol Ther 2002; 6: 219–226.

    Article  CAS  PubMed  Google Scholar 

  27. Burcelin R, Dolci W, Thorens B . Glucose sensing by the hepatoportal sensor is GLUT2-dependent: in vivo analysis in GLUT2-null mice. Diabetes 2000; 49: 1643–1648.

    Article  CAS  PubMed  Google Scholar 

  28. Malhi H, Irani AN, Rajvanshi P, Suadicani SO, Spray DC, McDoland TV et al. KATP channels regulate mitogenically induced proliferation in primary rat hepatocytes and human liver cell lines. Implications for liver growth control and potential therapeutic targeting. J Biol Chem 2000; 275: 26050–26057.

    Article  CAS  PubMed  Google Scholar 

  29. Henderson RM, Graf J, Boyer JL . Inward-rectifying potassium channels in rat hepatocytes. Am J Physiol 1989; 171: G1028–G1035.

    Google Scholar 

  30. Nishikawa M, Huang L . Nonviral vectors in the new millennium: delivery barriers in gene transfer. Hum Gene Ther 2001; 12: 861–870.

    Article  CAS  PubMed  Google Scholar 

  31. Kaneda Y, Iwai K, Uchida T . Introduction and expression of the human insulin gene in adult rat liver. J Biol Chem 1989; 264: 12126–12129.

    CAS  PubMed  Google Scholar 

  32. Calos MP . The potential of extrachromosomal replicating vectors for gene therapy. Trends Genet 1996; 12: 463–466.

    Article  CAS  PubMed  Google Scholar 

  33. Yasutomi K, Itokawa Y, Asada H, Kishida T, Cui FD, Ohashi S et al. Intravascular insulin gene delivery as potential therapeutic intervention in diabetes mellitus. Biochem Biophys Res Commun 2003; 310: 897–903.

    Article  CAS  PubMed  Google Scholar 

  34. Chen ZY, Yant SR, He CY, Meuse L, Shen S . Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Mol Ther 2001; 3: 403–410.

    Article  CAS  PubMed  Google Scholar 

  35. Chen ZY, He CY, Ehrhardt A, Kay MA . Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther 2003; 8: 495–500.

    Article  CAS  PubMed  Google Scholar 

  36. Fregien N, Davidson N . Activating elements in the promoter region of the chicken beta-actin gene. Gene 1986; 48: 1–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant No. RTI04-01-01 and RTI04-03-02 from the Regional Technology Innovation Program of the Ministry of Commerce, Industry and Energy (MOCIE). We thank Ishihara Sangyo Kaisha, Ltd (Osaka, Japan) for donating HVJ-E vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-K Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Park, KG., Morishita, R. et al. Liver-directed gene therapy of diabetic rats using an HVJ-E vector containing EBV plasmids expressing insulin and GLUT 2 transporter. Gene Ther 13, 216–224 (2006). https://doi.org/10.1038/sj.gt.3302644

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302644

Keywords

This article is cited by

Search

Quick links