Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Conference Paper
  • Published:

Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects

Abstract

Serious unwanted complications provoked by retroviral gene transfer into hematopoietic stem cells (HSCs) have recently raised the need for the development and assessment of alternative gene transfer vectors. Within this context, nonviral gene transfer systems are attracting increasing interest. Their main advantages include low cost, ease of handling and large-scale production, large packaging capacity and, most importantly, biosafety. While nonviral gene transfer into HSCs has been restricted in the past by poor transfection efficiency and transient maintenance, in recent years, biotechnological developments are converting nonviral transfer into a realistic approach for genetic modification of cells of hematopoietic origin. Herein we provide an overview of past accomplishments in the field of nonviral gene transfer into hematopoietic progenitor/stem cells and we point at future challenges. We argue that episomally maintained self-replicating vectors combined with physical methods of delivery show the greatest promise among nonviral gene transfer strategies for the treatment of disorders of the hematopoietic system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Halene S, Kohn DB . Gene therapy using hematopoietic stem cells: sisyphus approaches the crest. Hum Gene Ther 2000; 11: 1259–1267.

    CAS  PubMed  Google Scholar 

  2. Van Tendeloo VF, Van Broeckhoven C, Berneman ZN . Gene therapy: principles and applications to hematopoietic cells. Leukemia 2001; 15: 523–544.

    CAS  PubMed  Google Scholar 

  3. Orkin SH . Diversification of hematopoietic stem cells to specific lineages. Nat Rev Genet 2000; 1: 57–64.

    CAS  PubMed  Google Scholar 

  4. Weissman IL, Anderson DJ, Gage F . Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001; 17: 387–403.

    CAS  PubMed  Google Scholar 

  5. Bordignon C et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients. Science 1995; 270: 470–475.

    CAS  PubMed  Google Scholar 

  6. Brenner MK . Gene transfer and the treatment of haematological malignancy. J Intern Med 2001; 249: 345–358.

    CAS  PubMed  Google Scholar 

  7. Kohn DB . Gene therapy for genetic haematological disorders and immunodeficiencies. J Intern Med 2001; 249: 379–390.

    CAS  PubMed  Google Scholar 

  8. Martin-Rendon E, Watt SM . Stem cell plasticity. Br J Haematol 2003; 122: 877–891.

    PubMed  Google Scholar 

  9. Klein C, Baum C . Gene therapy for inherited disorders of haematopoietic cells. Hematol J 2004; 5: 103–111.

    CAS  PubMed  Google Scholar 

  10. Bordignon C, Roncarolo MG . Therapeutic applications for hematopoietic stem cell gene transfer. Nat Immunol 2002; 3: 318–321.

    CAS  PubMed  Google Scholar 

  11. Kohn DB et al. American Society of Gene Therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells. Mol Ther 2003; 8: 180–187.

    CAS  PubMed  Google Scholar 

  12. Recillas-Targa F, Valadez-Graham V, Farrell CM . Prospects and implications of using chromatin insulators in gene therapy and transgenesis. BioEssays 2004; 26: 796–807.

    CAS  PubMed  Google Scholar 

  13. Hawley RG . Progress toward vector design for hematopoietic stem cell gene therapy. Curr Gene Ther 2001; 1: 1–17.

    CAS  PubMed  Google Scholar 

  14. Baum C et al. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 2003; 101: 2099–2114.

    CAS  PubMed  Google Scholar 

  15. Haviernik P, Bunting KD . Safety concerns related to hematopoietic stem cell gene transfer using retroviral vectors. Curr Gene Ther 2004; 4: 263–276.

    CAS  PubMed  Google Scholar 

  16. Zufferey R et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–9880.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brenner S, Malech HL . Current developments in the design of onco-retrovirus and lentivirus vector systems for hematopoietic cell gene therapy. Biochim Biophys Acta 2003; 1640: 1–24.

    CAS  PubMed  Google Scholar 

  18. Raper SE et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003; 80: 148–158.

    CAS  PubMed  Google Scholar 

  19. Ritter T, Lehmann M, Volk HD . Improvements in gene therapy: averting the immune response to adenoviral vectors. BioDrugs 2002; 16: 3–10.

    CAS  PubMed  Google Scholar 

  20. Hacein-Bey-Abina S et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  21. Mikkers H, Berns A . Retroviral insertional mutagenesis: tagging cancer pathways. Adv Cancer Res 2003; 88: 53–99.

    CAS  PubMed  Google Scholar 

  22. Baum C et al. Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 2004; 9: 5–13.

    CAS  PubMed  Google Scholar 

  23. Li Z et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

    CAS  PubMed  Google Scholar 

  24. Challita PM, Kohn DB . Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proc Natl Acad Sci USA 1994; 91: 2567–2571.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Garrick D, Fiering S, Martin DIK, Whitelaw E . Repeat-induced gene silencing in mammals. Nat Genet 1998; 18: 56–59.

    CAS  PubMed  Google Scholar 

  26. Pannell D et al. Retrovirus vector silencing is de novo methylase independent and marked by a repressive histone code. EMBO J 2000; 19: 5884–5894.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Doerfler W et al. Integration of foreign DNA and its consequences in mammalian systems. Trends Biotechnol 1997; 15: 297–301.

    CAS  PubMed  Google Scholar 

  28. Palmer TD, Rosman GJ, Osborne WR, Miller AD . Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc Natl Acad Sci USA 1991; 88: 1330–1334.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoeben RC et al. Inactivation of the Moloney murine leukemia virus long terminal repeat in murine fibroblast lines is associated with methylation and dependent on its chromosomal position. J Virol 1991; 65: 904–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dorer DR, Henikoff S . Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 1994; 77: 993–1002.

    CAS  PubMed  Google Scholar 

  31. Bingham PM . Cosuppression comes to the animals. Cell 1997; 90: 385–387.

    CAS  PubMed  Google Scholar 

  32. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10: 4239–4242.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Larochelle A et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2: 1329–1337.

    CAS  PubMed  Google Scholar 

  34. Nolta JA, Smogorzecwska EM, Kohn DB . Analysis of optimal conditions for retroviral-mediated transduction of primitive human hematopoietic cells. Blood 1995; 86: 101–110.

    CAS  PubMed  Google Scholar 

  35. Tisdale JF et al. Ex vivo expansion of genetically marked rhesus peripheral blood progenitor cells results in diminished long-term repopulating ability. Blood 1998; 92: 1131–1141.

    CAS  PubMed  Google Scholar 

  36. Williams DA . Ex vivo expansion of hematopoietic stem and progenitor cells: robbing Peter to pay Paul? Blood 1993; 81: 3169–3172.

    CAS  PubMed  Google Scholar 

  37. Logan AC, Lutzko C, Kohn DB . Advances in lentiviral vector design for gene-modification of hematopoietic stem cells. Curr Opin Biotechnol 2002; 13: 429–436.

    CAS  PubMed  Google Scholar 

  38. Nishikawa M, Hashida M . Nonviral approaches satisfying various requirements for effective in vivo gene therapy. Biol Pharm Bull 2002; 25: 275–283.

    CAS  PubMed  Google Scholar 

  39. Niidome T, Huang L . Gene therapy progress and prospects: nonviral vectors. Gene Therapy 2002; 9: 1647–1652.

    CAS  PubMed  Google Scholar 

  40. Brenner MK . Emerging applications of gene transfer in the hematopoietic cancers. J Pediatr Hemat Oncol 1997; 19: 1–6.

    CAS  Google Scholar 

  41. Kumar VV, Singh RS, Chaudhuri A . Cationic transfection lipids in gene therapy: successes, set-backs, challenges and promises. Curr Med Chem 2003; 10: 1297–1306.

    CAS  PubMed  Google Scholar 

  42. Clark PR, Hersh EM . Cationic lipid-mediated gene transfer: current concepts. Curr Opin Mol Ther 1999; 1: 158–176.

    CAS  PubMed  Google Scholar 

  43. Gao X, Huang L . Cationic liposome-mediated gene transfer. Gene Therapy 1995; 2: 710–722.

    CAS  PubMed  Google Scholar 

  44. Smith JG, Walzem RL, German JB . Liposomes as agents of DNA transfer. Biochem Biophys Acta 1993; 1154: 327–340.

    CAS  PubMed  Google Scholar 

  45. Zhou X, Huang L . DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta 1994; 1189: 195–203.

    CAS  PubMed  Google Scholar 

  46. Friend DS, Papahadjopoulos D, Debs RJ . Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim Biophys Acta 1996; 1278: 41–50.

    PubMed  Google Scholar 

  47. Zabner J et al. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 1995; 270: 18997–19007.

    CAS  PubMed  Google Scholar 

  48. Hawley-Nelson P et al. Lipofectamine reagent: a new, higher efficiency polycationic liposome transfection reagent. Focus 1993; 15: 73–79.

    Google Scholar 

  49. Teixeira LA et al. An efficient gene transfer system for hematopoietic cell line using transient and stable vectors. J Biotechnol 2001; 88: 159–165.

    CAS  PubMed  Google Scholar 

  50. Ilies MA, Seitz WA, Balaban AT . Cationic lipids in gene delivery: principles, vector design and therapeutic applications. Curr Pharm Des 2002; 8: 2441–2473.

    CAS  PubMed  Google Scholar 

  51. Hyde SC et al. Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Therapy 2000; 7: 1156–1165.

    CAS  PubMed  Google Scholar 

  52. Floch V et al. Cationic phosphonolipids as non viral vectors for DNA transfection in hematopoietic cell lines and CD34+ cells. Blood Cell Mol Dis 1997; 23: 69–87.

    CAS  Google Scholar 

  53. Harrison GS et al. Optimization of gene transfer using cationic lipids in cell lines and primary human CD4+ and CD34+ hematopoietic cells. Biotechniques 1995; 19: 816–823.

    CAS  PubMed  Google Scholar 

  54. Satoh E et al. Efficient gene transduction by Epstein–Barr virus-based vectors coupled with cationic liposome and HVJ-liposome. Biochem Biophys Res Commun 1997; 238: 795–799.

    CAS  PubMed  Google Scholar 

  55. Labat-Moleur F et al. An electron microscopy study into the mechanism of gene transfer with lipopolyamines. Gene Therapy 1996; 3: 1010–1017.

    CAS  PubMed  Google Scholar 

  56. Boussif O, Zanta MA, Behr JP . Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000-fold. Gene Therapy 1996; 3: 1074–1080.

    CAS  PubMed  Google Scholar 

  57. Marit G et al. Increased liposome-mediated gene transfer into hematopoietic cells grown in adhesion to stromal or fibroblast cell line monolayers. Eur J Haematol 2000; 64: 22–31.

    CAS  PubMed  Google Scholar 

  58. Keller H et al. Transgene expression, but not gene delivery, is improved by adhesion-assisted lipofection of hematopoietic cells. Gene Therapy 1999; 6: 931–938.

    CAS  PubMed  Google Scholar 

  59. Floch V et al. Transgene expression kinetics after transfection with cationic phosphonolipids in hematopoietic non adherent cells. Biochim Biophys Acta 1998; 1371: 53–70.

    CAS  PubMed  Google Scholar 

  60. Brunner S et al. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Therapy 2000; 7: 401–407.

    CAS  PubMed  Google Scholar 

  61. Yang NS et al. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA 1990; 87: 9568–9572.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gainer AL et al. Successful biolistic transformation of mouse pancreatic islets while preserving cellular function. Trasplantation 1996; 61: 1567–1571.

    CAS  Google Scholar 

  63. Huang H, Pannetier C, Hu-Li J, Paul WE . Transient transfection of primary T helper cells by particle-mediated gene transfer. J Immunol Methods 1998; 215: 173–177.

    CAS  PubMed  Google Scholar 

  64. Ye ZQ et al. Cytokine transgene expression and promoter usage in primary CD34+ cells using particle-mediated gene delivery. Hum Gene Ther 1998; 9: 2197–2205.

    CAS  PubMed  Google Scholar 

  65. Verma S et al. Gene transfer into human umbilical cord blood-derived CD34+ cells by particle-mediated gene transfer. Gene Therapy 1998; 5: 692–699.

    CAS  PubMed  Google Scholar 

  66. Chang DC, Reese TS . Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys J 1990; 58: 1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Weaver JC . Molecular basis for cell membrane electroporation. Ann NY Acad Sci 1994; 720: 141–152.

    CAS  PubMed  Google Scholar 

  68. Klenchin VA et al. Electrically induced DNA uptake by cells is a fast process involving DNA electrophoresis. Biophys J 1991; 60: 804–811.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sukharev SI et al. Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys J 1992; 63: 1320–1327.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rols MP et al. In vivo electrically mediated protein and gene transfer in murine melanoma. Nat Biotechnol 1998; 16: 168–171.

    CAS  PubMed  Google Scholar 

  71. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH . Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982; 1: 841–845.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Mir LM et al. Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization: direct access to the cytosol. Exp Cell Res 1988; 175: 15–25.

    CAS  PubMed  Google Scholar 

  73. Bloquel C, Fabre E, Bureau MF, Scherman D . Plasmid DNA electrotransfer for intracellular and secreted proteins expression: new methodological developments and applications. J Gene Med 2004; 6 (Suppl 1): S11–S23.

    CAS  PubMed  Google Scholar 

  74. Takahashi M et al. Gene transfer into human leukemia cell lines by electroporation: experience with exponentially decaying and square wave pulse. Leuk Res 1991; 15: 507–513.

    CAS  PubMed  Google Scholar 

  75. Pahl HL, Burn TC, Tenen DG . Optimization of transient transfection into human myeloid cell lines using a luciferase reporter gene. Exp Hematol 1991; 19: 1038–1041.

    CAS  PubMed  Google Scholar 

  76. Toneguzzo F, Keating A . Stable expression of selectable genes introduced into human hematopoietic stem cells by electric field-mediated DNA transfer. Proc Natl Acad Sci USA 1986; 83: 3496–3499.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Keating A, Toneguzzo F . Gene transfer by electroporation: a model for gene therapy. Prog Clin Biol Res 1990; 333: 491–498.

    CAS  PubMed  Google Scholar 

  78. Wu MH et al. Efficient expression of foreign genes in human CD34+ hematopoietic precursor cells using electroporation. Gene Therapy 2001; 8: 384–390.

    CAS  PubMed  Google Scholar 

  79. Wu MH, Smith SL, Dolan ME . High efficiency electroporation of human umbilical cord blood CD34+ hematopoietic precursor cells. Stem Cells 2001; 19: 492–499.

    CAS  PubMed  Google Scholar 

  80. Wu MH et al. Optimization of culture conditions to enhance transfection of human CD34+ cells by electroporation. Bone Marrow Transplant 2001; 27: 1201–1209.

    CAS  PubMed  Google Scholar 

  81. Satoh E et al. Successful transfer of ADA gene in vitro into human peripheral blood CD34+ cells by transfecting EBV-based episomal vectors. FEBS Lett 1998; 441: 39–42.

    CAS  PubMed  Google Scholar 

  82. Oliveira DM, Goodell MA . Transient RNA interference in hematopoietic progenitors with functional consequences. Genesis 2003; 36: 203–208.

    CAS  PubMed  Google Scholar 

  83. Van Tendeloo VF et al. High-level transgene expression in primary human T lymphocytes and adult bone marrow CD34+ cells via electroporation-mediated gene delivery. Gene Therapy 2000; 7: 1431–1437.

    CAS  PubMed  Google Scholar 

  84. Weissinger F et al. Gene transfer in purified human hematopoietic peripheral-blood stem cells by means of electroporation without prestimulation. J Lab Clin Med 2003; 141: 138–149.

    CAS  PubMed  Google Scholar 

  85. Takahashi M et al. Efficient introduction of a gene into hematopoietic cells in S-phase by electroporation. Exp Hematol 1991; 19: 343–346.

    CAS  PubMed  Google Scholar 

  86. Takahashi M et al. Gene introduction into granulocyte–macrophage progenitor cells by electroporation: the relationship between introduction efficiency and the proportion of cells in S-phase. Leuk Res 1992; 16: 761–767.

    CAS  PubMed  Google Scholar 

  87. Yorifuji T, Tsuruta S, Mikawa H . The effect of cell synchronization in the efficiency of stable gene transfer by electroporation. FEBS Lett 1989; 245: 201–203.

    CAS  PubMed  Google Scholar 

  88. Papapetrou EP et al. Gene transfer into human hematopoietic progenitor cells with an episomal vector carrying a S/MAR element. Gene Therapy advance online publication, 11 August 2005; doi:10.1038/sj.gt.3302593.

    Google Scholar 

  89. Li LH, McCarthy P, Hui SW . High-efficiency electrotransfection of human primary hematopoietic stem cells. FASEB J 2001; 15: 586–588.

    CAS  PubMed  Google Scholar 

  90. Gordillo GM . Pathological consequences of unavoidable plasmid contamination with lipopolysaccharide. Transplant Immunol 1999; 7: 83–94.

    CAS  Google Scholar 

  91. Van Tendeloo VF et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood 2001; 98: 49–56.

    CAS  PubMed  Google Scholar 

  92. Gehl J et al. In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta 1999; 1428: 233–240.

    CAS  PubMed  Google Scholar 

  93. Kinosita K, Tsong TY . Voltage-induced pore formation and hemolysis of human erythrocytes. Biochim Biophys Acta 1997; 471: 227–242.

    Google Scholar 

  94. Lee RC et al. Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo. Proc Natl Acad Sci USA 1992; 89: 4524–4528.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Li LH et al. Apoptosis induced by DNA-uptake limits transfection efficiency. Exp Cell Res 1999; 253: 541–550.

    CAS  PubMed  Google Scholar 

  96. Hofmann F et al. Electric field pulses can induce apoptosis. J Membr Biol 1999; 169: 103–109.

    CAS  PubMed  Google Scholar 

  97. Watanabe M et al. Gene transfection of mouse primordial germ cells in vitro and analysis of their survival and growth control. Exp Cell Res 1997; 230: 76–83.

    CAS  PubMed  Google Scholar 

  98. Li LH, Ross P, Hui SW . Improving electrotransfection efficiency by post-pulse centrifugation. Gene Therapy 1999; 6: 364–372.

    CAS  PubMed  Google Scholar 

  99. Kinosita K, Tsong TY . Formation and resealing of pores of controlled sizes in human erythrocyte membranes. Nature 1997; 268: 438–441.

    Google Scholar 

  100. Gehl J, Skovsgaard T, Mir LM . Enhancement of cytotoxicity by electropermeabilization: an improved method for screening drugs. Anticancer Drugs 1998; 9: 319–325.

    CAS  PubMed  Google Scholar 

  101. Eppich HM et al. Pulsed electric fields for selection of hematopoietic cells and depletion of tumor cell contaminants. Nat Biotechnol 2000; 18: 882–887.

    CAS  PubMed  Google Scholar 

  102. Kobayashi N, Saeki K, Yuo A . Granulocyte–macrophage colony-stimulating factor and interleukin-3 induce cell cycle progression through the synthesis of c-Myc protein by internal ribosome entry site-mediated translation via phosphatidylinositol 3-kinase pathway in human factor-dependent leukemic cells. Blood 2003; 102: 3186–3195.

    CAS  PubMed  Google Scholar 

  103. Carlile GW, Smith DH, Wiedmann M . Caspase-3 has a nonapoptotic function in erythroid maturation. Blood 2004; 103: 4310–4316.

    CAS  PubMed  Google Scholar 

  104. Podar K et al. Critical role for hematopoietic cell kinase (Hck)-mediated phosphorylation of Gab1 and Gab2 docking proteins in interleukin 6-induced proliferation and survival of multiple myeloma cells. J Biol Chem 2004; 279: 21658–21665.

    CAS  PubMed  Google Scholar 

  105. Ludtke JJ, Sebestyen MG, Wolff JA . The effect of cell division on the cellular dynamics of microinjected DNA and dextran. Mol Ther 2002; 5: 579–588.

    CAS  PubMed  Google Scholar 

  106. Baum C . Transfection. In: Creighton TE (ed). Encyclopedia of Molecular Biology. Wiley and Sons: New York, 1999, pp 2596–2600.

    Google Scholar 

  107. Wang Z et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Therapy 2004; 11: 711–721.

    CAS  PubMed  Google Scholar 

  108. Milot E, Belmaaza A, Rassart E, Chartrand P . Association of a host DNA structure with retroviral integration sites in chromosomal DNA. Virology 1994; 20: 408–412.

    Google Scholar 

  109. Hwang LH, Gilboa E . Expression of genes introduced into cells by retroviral infection is more efficient than that of genes introduced into cells by DNA transfection. J Virol 1984; 50: 417–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Mielke C, Maass K, Tummler M, Bode J . Anatomy of highly expressing chromosomal sites targeted by retroviral vectors. Biochemistry 1996; 35: 2239–2252.

    CAS  PubMed  Google Scholar 

  111. Baer A, Schubeler D, Bode J . Transcriptional properties of genomic transgene integration sites marked by electroporation or retroviral infection. Biochemistry 2000; 39: 7041–7049.

    CAS  PubMed  Google Scholar 

  112. Aksentijevich I et al. In vitro and in vivo liposome-mediated gene transfer leads to human MDR1 expression in mouse bone marrow progenitor cells. Hum Gene Ther 1996; 7: 1111–1122.

    CAS  PubMed  Google Scholar 

  113. Vos J-M . Therapeutic mammalian artificial chromosomes. Curr Opin Mol Ther 1999; 1: 204–205.

    CAS  PubMed  Google Scholar 

  114. Lipps HJ, Bode J . Exploiting chromosomal and viral strategies: the design of safe and efficient non-viral gene transfer systems. Curr Opin Mol Ther 2001; 3: 133–141.

    CAS  PubMed  Google Scholar 

  115. Lipps HJ et al. Chromosome-based vectors for gene therapy. Gene 2003; 304: 23–33.

    CAS  PubMed  Google Scholar 

  116. Van Craenenbroeck K, Vanhoenacker P, Haegeman G . Episomal vectors for gene expression in mammalian cells. Eur J Biochem 2000; 267: 5665–5678.

    CAS  PubMed  Google Scholar 

  117. Krysan PJ, Haase SB, Calos MP . Isolation of human sequences that replicate autonomously in human cells. Mol Cell Biol 1989; 9: 1026–1033.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kelleher ZT et al. Epstein–Barr-based episomal chromosomes shuttle 100 kb of self-replicating circular human DNA in mouse cells. Nat Biotechnol 1998; 16: 762–768.

    CAS  PubMed  Google Scholar 

  119. DuBridge RB et al. Analysis of mutation in human cells by using an Epstein–Barr virus shuttle vector. Mol Cell Biol 1987; 7: 379–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Legerski R, Peterson C . Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature 1992; 360: 610.

    CAS  PubMed  Google Scholar 

  121. Calos MP . The potential of extrachromosomal replicating vectors for gene therapy. Trends Genet 1996; 12: 463–466.

    CAS  PubMed  Google Scholar 

  122. Cooper MJ et al. Safety-modified episomal vectors for human gene therapy. Proc Natl Acad Sci USA 1997; 94: 6450–6455.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sclimenti CR, Calos MP . Epstein–Barr virus vectors for gene expression and transfer. Curr Opin Biotechnol 1998; 9: 476–479.

    CAS  PubMed  Google Scholar 

  124. WadeMartins R et al. Stable correction of a genetic deficiency in human cells by an episome carrying a 115 kb genomic transgene. Nat Biotechnol 2000; 18: 1311–1314.

    CAS  Google Scholar 

  125. Black J, Vos J-M . Establishment of an oriP/EBNA1-based episomal vector transcribing human genomic β-globin in cultured murine fibroblasts. Gene Therapy 2002; 9: 1447–1454.

    CAS  PubMed  Google Scholar 

  126. Chow C-M et al. LCR-mediated, long-term tissue-specific gene expression within replicating episomal plasmid and cosmid vectors. Gene Therapy 2002; 9: 327–336.

    CAS  PubMed  Google Scholar 

  127. Mazda O, Satoh E, Yasutomi K, Imanishi J . Extremely efficient gene transfection into lympho-hematopoietic cell lines by Epstein–Barr virus-based vectors. J Immunol Methods 1997; 204: 143–151.

    CAS  PubMed  Google Scholar 

  128. Mazda O et al. A reporter system using a flow cytometer to detect promoter/enhancer activity in lymphoid cell lines. J Immunol Methods 1994; 169: 53–61.

    CAS  PubMed  Google Scholar 

  129. Mucke S et al. Suitability of Epstein–Barr virus-based episomal vectors for expression of cytokine genes in human lymphoma cells. Gene Therapy 1997; 4: 82–92.

    CAS  PubMed  Google Scholar 

  130. Stoll SM, Calos MP . Extrachromosomal plasmid vectors for gene therapy. Curr Opin Mol Ther 2002; 4: 299–305.

    CAS  PubMed  Google Scholar 

  131. Heller RA et al. Amplified expression of tumor necrosis factor receptor in cells transfected with Epstein–Barr virus shuttle vector cDNA libraries. J Biol Chem 1990; 265: 5708–5717.

    CAS  PubMed  Google Scholar 

  132. Sun TQ, Fernstermacher DA, Vos JM . Human artificial episomal chromosomes for cloning large DNA fragments in human cells. Nat Genet 1994; 8: 33–41.

    CAS  PubMed  Google Scholar 

  133. Simpson K, McGuigan A, Huxley C . Stable episomal maintenance of yeast artificial chromosomes in human cells. Mol Cell Biol 1996; 16: 5117–5126.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Belt PB et al. Efficient cDNA cloning by direct phenotypic correction of a mutant human cell line (HPRT−) using an Epstein–Barr virus-derived cDNA expression vector. Nucleic Acids Res 1991; 19: 4861–4866.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mazda O . Improvement of nonviral gene therapy by Epstein–Barr virus (EBV)-based plasmid vectors. Curr Gene Ther 2002; 2: 1–14.

    Google Scholar 

  136. Yates JL, Guan N . Epstein–Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. J Virol 1991; 65: 483–488.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Adams A . Replication of latent Epstein–Barr virus genomes in Raji cells. J Virol 1987; 61: 1590–1594.

    Google Scholar 

  138. Drinkwater NR, Klinedinst DK . Chemically induced mutagenesis in a shuttle vector with a low-background mutant frequency. Proc Natl Acad Sci USA 1986; 83: 3402–3406.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Vidal M et al. Differences in human cell lines to support stable replication of Epstein–Barr virus-based vectors. Biochim Biophys Acta 1990; 1048: 171–177.

    CAS  PubMed  Google Scholar 

  140. Krysan PJ, Calos MP . Epstein–Barr virus-based vectors that replicate in rodent cells. Gene 1993; 136: 137–143.

    CAS  PubMed  Google Scholar 

  141. Saeki Y, Wataya-Kaneda M, Tanaka K, Kaneda Y . Sustained transgene expression in vitro and in vivo using an Epstein–Barr virus replicon vector system combined with HVJ liposomes. Gene Therapy 1998; 5: 1031–1037.

    CAS  PubMed  Google Scholar 

  142. Kirchmaier AL, Sugden B . Plasmid maintenance of derivatives of oriP of Epstein–Barr virus. J Virol 1995; 69: 1280–1283.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Middleton T, Sugden B . Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein–Barr virus replication protein EBNA1. J Virol 1994; 68: 4067–4071.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Rice PW, Cole CN . Efficient transcriptional activation of many simple modular promoters by simian virus 40 large T-antigen. J Virol 1993; 67: 6689–6697.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Slinskey A, Barnes D, Pipas JM . Simian virus 40 large T-antigen J domain and Rb-binding motif are sufficient to block apoptosis induced by growth factor withdrawal in a neural stem cell line. J Virol 1999; 73: 6791–6799.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Mukherjee S et al. Murine cytotoxic T lymphocytes recognize an epitope in an EBNA-1 fragment, but fail to lyse EBNA-1-expressing mouse cells. J Exp Med 1998; 187: 445–450.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Wilson JB, Bell JL, Levine AJ . Expression of Epstein–Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. EMBO J 1996; 15: 3117–3126.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Snudden DK et al. EBNA-1, the major nuclear antigen of Epstein–Barr virus, resembles ‘RGG’ RNA binding proteins. EMBO J 1994; 13: 4840–4847.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Lei DC et al. Episomal expression of wild-type CFTR corrects cAMP-dependent chloride transport in respiratory epithelial cells. Gene Therapy 1996; 3: 427–436.

    CAS  PubMed  Google Scholar 

  150. Banerjee S, Livanos E, Vos J-M . Therapeutic gene delivery in human B-lymphoblastoid cells by engineered non-transforming infectious Epstein–Barr virus. Nat Med 1995; 1: 1303–1308.

    CAS  PubMed  Google Scholar 

  151. Yates JL, Warren N, Sugden B . Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells. Nature 1985; 313: 812–815.

    CAS  PubMed  Google Scholar 

  152. Grimes BR, Warburton PE, Farr CJ . Chromosome engineering: prospects for gene therapy. Gene Therapy 2002; 9: 713–718.

    CAS  PubMed  Google Scholar 

  153. Saffery R, Choo KH . Strategies for engineering human chromosomes with therapeutic potential. J Gene Med 2002; 4: 5–13.

    PubMed  Google Scholar 

  154. Harrington JJ et al. Formation of de novo centromeres and construction of first generation human artificial microchromosomes. Nat Genet 1997; 15: 345–355.

    CAS  PubMed  Google Scholar 

  155. Grimes BR et al. Stable expression from a mammalian artificial chromosome. EMBO Rep 2001; 2: 910–914.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Meija JE et al. Functional complementation of genetic deficiency with human artificial chromosomes. Am J Hum Genet 2001; 69: 315–326.

    Google Scholar 

  157. Auriche C et al. Functional human CFTR produced by a stable minichromosome. EMBO Rep 2002; 3: 826–828.

    Google Scholar 

  158. Vanderbyl S et al. Transgene expression after stable transfer of a mammalian artificial chromosome into human hematopoietic cells. Blood 2004; 104:(abstract 498).

  159. Piechaczek C et al. A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res 1999; 27: 426–428.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Bode J et al. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 1992; 255: 195–197.

    CAS  PubMed  Google Scholar 

  161. Schaarschmidt D et al. An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J 2004; 23: 191–201.

    CAS  PubMed  Google Scholar 

  162. Jenke AC, Scinteie MF, Stehle IM, Lipps HJ . Expression of a transgene encoded on a non-viral episomal vector is not subject to epigenetic silencing by cytokine methylation. Mol Biol Rep 2004; 31: 85–90.

    CAS  PubMed  Google Scholar 

  163. Baiker A et al. Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix. Nat Cell Biol 2000; 2: 182–184.

    CAS  PubMed  Google Scholar 

  164. Jenke BH et al. An episomally replicating vector binds to the nuclear matrix protein SAF-A in vivo. EMBO Rep 2002; 3: 349–354.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Corrias MV et al. Growth factors increase retroviral transduction but decrease clonogenic potential of umbilical cord blood CD34+ cells. Haematologica 1998; 83: 580–586.

    CAS  PubMed  Google Scholar 

  166. Lechardeur D et al. Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Therapy 1999; 6: 482–497.

    CAS  PubMed  Google Scholar 

  167. Greber UF et al. The role of the nuclear pore complex in adenovirus DNA entry. EMBO J 1997; 16: 5998–6007.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Kaneda Y, Iwai K, Uchida T . Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science 1989; 243: 375–378.

    CAS  PubMed  Google Scholar 

  169. Zanta M-A, Belguise-Valladier P, Behr J-P . Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA 1999; 96: 91–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Remy JS et al. Targeted gene transfer into hepatoma cells with lipopolyamine-condensed DNA particles presenting galactose ligands: a stage toward artificial viruses. Proc Natl Acad Sci USA 1995; 92: 1744–1748.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Fominaya J, Wels W . Target cell-specific DNA transfer mediated by a chimeric multidomain protein. Novel non-viral gene delivery system. J Biol Chem 1996; 271: 10560–10568.

    CAS  PubMed  Google Scholar 

  172. Moss B . Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci USA 1996; 93: 11341–11348.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Jin CH et al. Recombinant Sendai virus provides a highly efficient gene transfer into human cord blood-derived hematopoietic stem cells. Gene Therapy 2003; 10: 272–277.

    CAS  PubMed  Google Scholar 

  174. Montini E et al. In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. Mol Ther 2002; 6: 759–769.

    CAS  PubMed  Google Scholar 

  175. Olivares EC et al. Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol 2002; 20: 1124–1128.

    CAS  PubMed  Google Scholar 

  176. Ortiz-Urda S et al. Stable nonviral genetic correction of inherited human skin disease. Nat Med 2002; 8: 1166–1170.

    CAS  PubMed  Google Scholar 

  177. Herweijer H et al. Time course of gene expression after plasmid DNA gene transfer to the liver. J Gene Med 2001; 3: 280–291.

    CAS  PubMed  Google Scholar 

  178. Guo ZS, Wang LH, Eisensmith RC, Woo SL . Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Therapy 1996; 3: 802–810.

    CAS  PubMed  Google Scholar 

  179. Yew NS et al. Optimization of plasmid vectors for high-level expression in lung epithelial cells. Hum Gene Ther 1997; 8: 575–584.

    CAS  PubMed  Google Scholar 

  180. Loser P, Jennings GS, Strauss M, Sandig V . Reactivation of the previously silenced cytomegalovirus major immediate-early promoter in the mouse liver: involvement of NFkappaB. J Virol 1998; 72: 180–190.

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Qin L et al. Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther 1997; 8: 2019–2029.

    CAS  PubMed  Google Scholar 

  182. Paillard F . CpG: the double-edged sword. Hum Gene Ther 1999; 10: 2089–2090.

    CAS  PubMed  Google Scholar 

  183. Chen ZY, He CY, Meuse L, Kay MA . Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Therapy 2004; 11: 856–864.

    CAS  PubMed  Google Scholar 

  184. Tan Y, Li S, Pitt BR, Huang L . The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum Gene Ther 1999; 10: 2153–2161.

    CAS  PubMed  Google Scholar 

  185. Krieg AM et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995; 374: 546–549.

    CAS  PubMed  Google Scholar 

  186. Krieg AM et al. Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci USA 1998; 95: 12631–12636.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Gill DR et al. Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gene Therapy 2001; 8: 1539–1546.

    CAS  PubMed  Google Scholar 

  188. Alino SF, Crespo A, Dasi F . Long-term therapeutic levels of human alpha-1 antitrypsin in plasma after hydrodynamic injection of nonviral DNA. Gene Therapy 2003; 10: 1672–1679.

    CAS  PubMed  Google Scholar 

  189. Hofman CR et al. Efficient in vivo gene transfer by PCR amplified fragment with reduced inflammatory activity. Gene Therapy 2001; 8: 71–74.

    CAS  PubMed  Google Scholar 

  190. Darquet AM et al. A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Therapy 1997; 4: 1341–1349.

    CAS  PubMed  Google Scholar 

  191. Ebert O et al. Lymphocyte apoptosis induction by gene transfer techniques. Gene Therapy 1997; 4: 296–302.

    CAS  PubMed  Google Scholar 

  192. Yew NS et al. Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes. Hum Gene Ther 1999; 10: 223–234.

    CAS  PubMed  Google Scholar 

  193. Schleef M, Schmidt T . Animal-free production of ccc-supercoiled plasmids for research and clinical applications. J Gene Med 2004; 6: S45–S53.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants "Karatheodori 2003" (University of Patras, B112) and EPAN 2003 (EU via GSRT, SP-YB90) to AA.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papapetrou, E., Zoumbos, N. & Athanassiadou, A. Genetic modification of hematopoietic stem cells with nonviral systems: past progress and future prospects. Gene Ther 12 (Suppl 1), S118–S130 (2005). https://doi.org/10.1038/sj.gt.3302626

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302626

Keywords

This article is cited by

Search

Quick links