Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Conference Paper
  • Published:

Replication-competent herpes simplex vectors: design and applications

Abstract

Replication-competent vectors are derived from attenuated viruses whose genes, that are nonessential for replication in cultured cells in vitro, are either mutated or deleted. The removal of one or more nonessential genes may reduce pathogenicity without requiring a cell line to complement growth. Herpes simplex viruses (HSV) are potential vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. This review highlights the progress in creating attenuated genetically engineered HSV vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Roizman B, Knipe DM . Herpes simplex viruses and their replication. In: Knipe DM, Howley PM (eds). Fields Virology. Lippincot, Williams and Wilkins: Philadelphia, PA, 2001, pp 2399–2460.

    Google Scholar 

  2. Todo T . Oncolytic virus therapy using genetically engineered herpes simplex viruses. Hum Cell 2002; 15: 151–159.

    Article  PubMed  Google Scholar 

  3. Hu JC, Coffin RS . Oncolytic herpes simplex virus for tumor therapy. Int Rev Neurobiol 2003; 55: 165–184.

    Article  CAS  PubMed  Google Scholar 

  4. Chiocca EA . Oncolytic viruses. Nat Rev Cancer 2002; 2: 938–950.

    Article  PubMed  Google Scholar 

  5. Mullen JT, Tanabe KK . Viral oncolysis. Oncologist 2002; 7: 106–119.

    Article  CAS  PubMed  Google Scholar 

  6. Shah AC, Benos D, Gillespie GY, Markert JM . Oncolytic viruses: clinical applications as vectors for the treatment of malignant gliomas. J Neurooncol 2003; 65: 203–226.

    Article  PubMed  Google Scholar 

  7. Post DE, Fulci G, Chiocca EA, Van Meir EG . Replicative oncolytic herpes simplex viruses in combination cancer therapies. Curr Gene Ther 2004; 4: 41–51.

    Article  CAS  PubMed  Google Scholar 

  8. Spector FC et al. Evaluation of a live attenuated recombinant virus RAV 9395 as a herpes simplex virus type 2 vaccine in guinea pigs. J Infect Dis 1998; 177: 1143–1154.

    Article  CAS  PubMed  Google Scholar 

  9. Koelle DM, Corey L . Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev 2003; 16: 96–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morrison LA . Vaccines against genital herpes: progress and limitations. Drugs 2002; 62: 1119–1129.

    Article  PubMed  Google Scholar 

  11. De Giuli Morghen C et al. Virus vectors for immunoprophylaxis. AIDS Rev 2000; 2: 127–135.

    Google Scholar 

  12. Meignier B, Longnecker R, Roizman B . In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J Infect Dis 1988; 158: 602–614.

    Article  CAS  PubMed  Google Scholar 

  13. Meignier B, Martin B, Whitley RJ, Roizman B . In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020. II. Studies in immunocompetent and immunosuppressed owl monkeys (Aotus trivirgatus). J Infect Dis 1990; 162: 313–321.

    Article  CAS  PubMed  Google Scholar 

  14. Bernstein DI, Ireland J, Bourne N . Pathogenesis of acyclovir-resistant herpes simplex type 2 isolates in animal models of genital herpes: models for antiviral evaluations. Antiviral Res 2000; 47: 159–169.

    Article  CAS  PubMed  Google Scholar 

  15. Walker J, Leib DA . Protection from primary infection and establishment of latency by vaccination with a herpes simplex virus type 1 recombinant deficient in the virion host shutoff (vhs) function. Vaccine 1998; 16: 1–5.

    Article  CAS  PubMed  Google Scholar 

  16. Aurelian L, Kokuba H, Smith CC . Vaccine potential of a herpes simplex virus type 2 mutant deleted in the PK domain of the large subunit of ribonucleotide reductase (ICP10). Vaccine 1999; 17: 1951–1963.

    Article  CAS  PubMed  Google Scholar 

  17. Galanis E, Vile R, Russell SJ . Delivery systems intended for in vivo gene therapy of cancer: targeting and replication competent viral vectors. Crit Rev Oncol Hematol 2001; 38: 177–192.

    Article  CAS  PubMed  Google Scholar 

  18. Markert JM, Parker JN, Gillespie GY, Whitley RJ . Genetically engineered human herpes simplex virus in the treatment of brain tumours. Herpes 2001; 8: 17–22.

    CAS  PubMed  Google Scholar 

  19. Toda M, Rabkin SD, Kojima H, Martuza RL . Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum Gene Ther 1999; 10: 385–393.

    Article  CAS  PubMed  Google Scholar 

  20. Toda M, Martuza RL, Rabkin SD . Tumor growth inhibition by intratumoral inoculation of defective herpes simplex virus vectors expressing granulocyte-macrophage colony-stimulating factor. Mol Ther 2000; 2: 324–329.

    Article  CAS  PubMed  Google Scholar 

  21. Todo T, Martuza RL, Rabkin SD, Johnson PA . Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci USA 2001; 98: 6396–6401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boviatsis EJ et al. Antitumor activity and reporter gene transfer into rat brain neoplasms inoculated with herpes simplex virus vectors defective in thymidine kinase or ribonucleotide reductase. Gene Therapy 1994; 1: 323–331.

    CAS  PubMed  Google Scholar 

  23. Martuza RL et al. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252: 854–856.

    Article  CAS  PubMed  Google Scholar 

  24. Kramm CM et al. Long-term survival in a rodent model of disseminated brain tumors by combined intrathecal delivery of herpes vectors and ganciclovir treatment. Hum Gene Ther 1996; 7: 1989–1994.

    Article  CAS  PubMed  Google Scholar 

  25. Carroll NM, Chase M, Chiocca EA, Tanabe KK . The effect of ganciclovir on herpes simplex virus-mediated oncolysis. J Surg Res 1997; 69: 413–417.

    Article  CAS  PubMed  Google Scholar 

  26. Chambers R et al. Comparison of genetically engineered herpes simplex viruses for the treatment of brain tumors in a scid mouse model of human malignant glioma. Proc Natl Acad Sci USA 1995; 92: 1411–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Markert JM, Malick A, Coen DM, Martuza RL . Reduction and elimination of encephalitis in an experimental glioma therapy model with attenuated herpes simplex mutants that retain susceptibility to acyclovir. Neurosurgery 1993; 32: 597–603.

    Article  CAS  PubMed  Google Scholar 

  28. Chou J, Kern ER, Whitley RJ, Roizman B . Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 1990; 250: 1262–1266.

    Article  CAS  PubMed  Google Scholar 

  29. Liu BL et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Therapy 2003; 10: 292–303.

    Article  CAS  PubMed  Google Scholar 

  30. Mineta T et al. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 1995; 1: 938–943.

    Article  CAS  PubMed  Google Scholar 

  31. Hunter WD et al. Attenuated, replication-competent herpes simplex virus type 1 mutant G207: safety evaluation of intracerebral injection in nonhuman primates. J Virol 1999; 73: 6319–6326.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Markert JM et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Therapy 2000; 7: 867–874.

    Article  CAS  PubMed  Google Scholar 

  33. MacLean AR et al. Herpes simplex virus type 1 deletion variants 1714 and 1716 pinpoint neurovirulence-related sequences in Glasgow strain 17+ between immediate early gene 1 and the ‘a’ sequence. J Gen Virol 1991; 72 (Part 3): 631–639.

    Article  CAS  PubMed  Google Scholar 

  34. Harrow S et al. HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Therapy 2004; 11: 1648–1658.

    Article  CAS  PubMed  Google Scholar 

  35. Rampling R et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Therapy 2000; 7: 859–866.

    Article  CAS  PubMed  Google Scholar 

  36. Randazzo BP et al. Treatment of experimental intracranial murine melanoma with a neuroattenuated herpes simplex virus 1 mutant. Virology 1995; 211: 94–101.

    Article  CAS  PubMed  Google Scholar 

  37. Toda M, Rabkin SD, Martuza RL . Treatment of human breast cancer in a brain metastatic model by G207, a replication-competent multimutated herpes simplex virus 1. Hum Gene Ther 1998; 9: 2177–2185.

    Article  CAS  PubMed  Google Scholar 

  38. Kooby DA et al. Oncolytic viral therapy for human colorectal cancer and liver metastases using a multi-mutated herpes simplex virus type-1 (G207). FASEB J 1999; 13: 1325–1334.

    Article  CAS  PubMed  Google Scholar 

  39. Cozzi PJ et al. Oncolytic viral gene therapy for prostate cancer using two attenuated, replication-competent, genetically engineered herpes simplex viruses. Prostate 2002; 53: 95–100.

    Article  CAS  PubMed  Google Scholar 

  40. McAuliffe PF et al. Effective treatment of pancreatic tumors with two multimutated herpes simplex oncolytic viruses. J Gastrointest Surg 2000; 4: 580–588.

    Article  CAS  PubMed  Google Scholar 

  41. Carew JF et al. Selective infection and cytolysis of human head and neck squamous cell carcinoma with sparing of normal mucosa by a cytotoxic herpes simplex virus type 1 (G207). Hum Gene Ther 1999; 10: 1599–1606.

    Article  CAS  PubMed  Google Scholar 

  42. Andreansky S et al. Treatment of intracranial gliomas in immunocompetent mice using herpes simplex viruses that express murine interleukins. Gene Therapy 1998; 5: 121–130.

    Article  CAS  PubMed  Google Scholar 

  43. Parker JN et al. Engineered herpes simplex virus expressing IL-12 in the treatment of experimental murine brain tumors. Proc Natl Acad Sci USA 2000; 97: 2208–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bennett JJ et al. Interleukin 12 secretion enhances antitumor efficacy of oncolytic herpes simplex viral therapy for colorectal cancer. Ann Surg 2001; 233: 819–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wong RJ et al. Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Hum Gene Ther 2001; 12: 253–265.

    Article  CAS  PubMed  Google Scholar 

  46. Todo T, Martuza RL, Dallman MJ, Rabkin SD . In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity. Cancer Res 2001; 61: 153–161.

    CAS  PubMed  Google Scholar 

  47. Nakamura H et al. Multimodality therapy with a replication-conditional herpes simplex virus 1 mutant that expresses yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine to 5-fluorouracil. Cancer Res 2001; 61: 5447–5452.

    CAS  PubMed  Google Scholar 

  48. Aghi M et al. Synergistic anticancer effects of ganciclovir/thymidine kinase and 5-fluorocytosine/cytosine deaminase gene therapies. J Natl Cancer Inst 1998; 90: 370–380.

    Article  CAS  PubMed  Google Scholar 

  49. Toda M, Martuza RL, Rabkin SD . Combination suicide/cytokine gene therapy as adjuvants to a defective herpes simplex virus-based cancer vaccine. Gene Therapy 2001; 8: 332–339.

    Article  CAS  PubMed  Google Scholar 

  50. Pawlik TM et al. Prodrug bioactivation and oncolysis of diffuse liver metastases by a herpes simplex virus 1 mutant that expresses the CYP2B1 transgene. Cancer 2002; 95: 1171–1181.

    Article  CAS  PubMed  Google Scholar 

  51. Aghi M et al. Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res 1999; 59: 3861–3865.

    CAS  PubMed  Google Scholar 

  52. Mohr I et al. A herpes simplex virus type 1 gamma34.5 second-site suppressor mutant that exhibits enhanced growth in cultured glioblastoma cells is severely attenuated in animals. J Virol 2001; 75: 5189–5196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. He B et al. Suppression of the phenotype of gamma(1)34.5- herpes simplex virus 1: failure of activated RNA-dependent protein kinase to shut off protein synthesis is associated with a deletion in the domain of the alpha47 gene. J Virol 1997; 71: 6049–6054.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Taneja S et al. Enhanced antitumor efficacy of a herpes simplex virus mutant isolated by genetic selection in cancer cells. Proc Natl Acad Sci USA 2001; 98: 8804–8808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chahlavi A, Todo T, Martuza RL, Rabkin SD . Replication-competent herpes simplex virus vector G207 and cisplatin combination therapy for head and neck squamous cell carcinoma. Neoplasia 1999; 1: 162–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jorgensen TJ et al. Ionizing radiation does not alter the antitumor activity of herpes simplex virus vector G207 in subcutaneous tumor models of human and murine prostate cancer. Neoplasia 2001; 3: 451–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fu X, Zhang X . Potent systemic antitumor activity from an oncolytic herpes simplex virus of syncytial phenotype. Cancer Res 2002; 62: 2306–2312.

    CAS  PubMed  Google Scholar 

  58. Fu X et al. Expression of a fusogenic membrane glycoprotein by an oncolytic herpes simplex virus potentiates the viral antitumor effect. Mol Ther 2003; 7: 748–754.

    Article  CAS  PubMed  Google Scholar 

  59. Nakamori M, Fu X, Pettaway CA, Zhang X . Potent antitumor activity after systemic delivery of a doubly fusogenic oncolytic herpes simplex virus against metastatic prostate cancer. Prostate 2004; 60: 53–60.

    Article  CAS  PubMed  Google Scholar 

  60. Laquerre S et al. Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol 1998; 72: 6119–6130.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Laquerre S, Anderson DB, Stolz DB, Glorioso JC . Recombinant herpes simplex virus type 1 engineered for targeted binding to erythropoietin receptor-bearing cells. J Virol 1998; 72: 9683–9697.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Argnani R, Boccafogli L, Marconi PC, Manservigi R . Specific targeted binding of herpes simplex virus type 1 to hepatocytes via the human hepatitis B virus preS1 peptide. Gene Therapy 2004; 11: 1087–1098.

    Article  CAS  PubMed  Google Scholar 

  63. Anderson DB et al. Pseudotyping of glycoprotein D-deficient herpes simplex virus type 1 with vesicular stomatitis virus glycoprotein G enables mutant virus attachment and entry. J Virol 2000; 74: 2481–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhou G, Ye GJ, Debinski W, Roizman B . Engineered herpes simplex virus 1 is dependent on IL13Ralpha 2 receptor for cell entry and independent of glycoprotein D receptor interaction. Proc Natl Acad Sci USA 2002; 99: 15124–15129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Manoj S et al. Mutations in herpes simplex virus glycoprotein D that prevent cell entry via nectins and alter cell tropism. Proc Natl Acad Sci USA 2004; 101: 12414–12421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boviatsis EJ et al. Long-term survival of rats harboring brain neoplasms treated with ganciclovir and a herpes simplex virus vector that retains an intact thymidine kinase gene. Cancer Res 1994; 54: 5745–5751.

    CAS  PubMed  Google Scholar 

  67. Miyatake S, Iyer A, Martuza RL, Rabkin SD . Transcriptional targeting of herpes simplex virus for cell-specific replication. J Virol 1997; 71: 5124–5132.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamamura H et al. Identification of the transcriptional regulatory sequences of human calponin promoter and their use in targeting a conditionally replicating herpes vector to malignant human soft tissue and bone tumors. Cancer Res 2001; 61: 3969–3977.

    CAS  PubMed  Google Scholar 

  69. Mullen JT et al. Regulation of herpes simplex virus 1 replication using tumor-associated promoters. Ann Surg 2002; 236: 502–512; discussion 512–513.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chung RY, Saeki Y, Chiocca EA . B-myb promoter retargeting of herpes simplex virus gamma34.5 gene-mediated virulence toward tumor and cycling cells. J Virol 1999; 73: 7556–7564.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hernandez-Alcoceba R, Pihalja M, Qian D, Clarke MF . New oncolytic adenoviruses with hypoxia- and estrogen receptor-regulated replication. Hum Gene Ther 2002; 13: 1737–1750.

    Article  CAS  PubMed  Google Scholar 

  72. Marples B et al. Development of synthetic promoters for radiation-mediated gene therapy. Gene Therapy 2000; 7: 511–517.

    Article  CAS  PubMed  Google Scholar 

  73. Scott SD, Marples B . Radiation-activated antitumor vectors. Methods Mol Med 2004; 90: 389–402.

    CAS  PubMed  Google Scholar 

  74. Palmer JA et al. Development and optimization of herpes simplex virus vectors for multiple long-term gene delivery to the peripheral nervous system. J Virol 2000; 74: 5604–5618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Braz J et al. Therapeutic efficacy in experimental polyarthritis of viral-driven enkephalin overproduction in sensory neurons. J Neurosci 2001; 21: 7881–7888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu X et al. Herpes simplex virus mediated gene transfer to primate ocular tissues. Exp Eye Res 1999; 69: 385–395.

    Article  CAS  PubMed  Google Scholar 

  77. Spencer B et al. Herpes simplex virus-mediated gene delivery to the rodent visual system. Invest Ophthalmol Vis Sci 2000; 41: 1392–1401.

    CAS  PubMed  Google Scholar 

  78. Goins WF et al. Herpes simplex virus type 1 vector-mediated expression of nerve growth factor protects dorsal root ganglion neurons from peroxide toxicity. J Virol 1999; 73: 519–532.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Italian National Institute of Health (ISS) project ‘Neurodegenerative diseases’, MIUR-FIRB-2001 (RBNE0127YS_002), MURST (40–60%) and EU Research Grant THOVLEN.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argnani, R., Lufino, M., Manservigi, M. et al. Replication-competent herpes simplex vectors: design and applications. Gene Ther 12 (Suppl 1), S170–S177 (2005). https://doi.org/10.1038/sj.gt.3302622

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302622

Keywords

Search

Quick links