Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Conference Paper
  • Published:

Adenovirus as vehicle for anticancer genetic immunotherapy

Abstract

Adenoviruses (Ads) are in the forefront of genetic immunization methods being developed against cancer. Their ability to elicit an effective immune response against tumor-associated antigens has been demonstrated in many model systems. Several clinical trials, which use Ad as vehicle for immunization, are already in progress. Preclinical studies have also demonstrated the efficacy of combining Ad-mediated immunization with adjuvants such as chemotherapeutic agents and cytokines. Issues related to sero-prevalence and safety of Ads, however, continue to pose a challenge and need to be addressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Basak S, Kiertscher SM, Harui A, Roth R . Modifying adenoviral vectors for use as gene-based cancer vaccines. Viral Immunol 2004; 17: 182–196.

    CAS  PubMed  Google Scholar 

  2. van den Broek M . Decreased tumor surveillance in perforin-deficient mice. J Exp Med 1996; 184: 1781–1790.

    CAS  PubMed  Google Scholar 

  3. Huang L, Hung M, Wagner E (eds). Non-Viral Vectors for Gene Therapy. Academic Press: New York, 1999.

    Google Scholar 

  4. Melief C . Tumor eradication by adoptive transfer of cytotoxic T lymphocytes. Adv Cancer Res 1992; 58: 143–175.

    CAS  PubMed  Google Scholar 

  5. Shankaran V et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001; 410: 1107–1111.

    CAS  PubMed  Google Scholar 

  6. Hunt D . Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 1992; 255: 1261–1263.

    CAS  PubMed  Google Scholar 

  7. Rosenberg SA . A new era of cancer immunotherapy: converting theory to performance. CA Cancer J Clin 1999; 49: 70–73, 65.

    CAS  PubMed  Google Scholar 

  8. Sahin U, Tureci O, Pfreundschuh M . Serological identification of human tumor antigens. Curr Opin Immunol 1997; 9: 709–716.

    CAS  PubMed  Google Scholar 

  9. Nagorsen D, Scheibenbogen C, Thiel E, Keilholz U . Immunological monitoring of cancer vaccine therapy. Expert Opin Biol Ther 2004; 4: 1677–1684.

    CAS  PubMed  Google Scholar 

  10. Dermime S, Armstrong A, Hawkins RE, Stern PL . Cancer vaccines and immunotherapy. Br Med Bull 2002; 62: 149–162.

    PubMed  Google Scholar 

  11. Sondak VK et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: overall results of a randomized trial of the Southwest Oncology Group. J Clin Oncol 2002; 20: 2058–2066.

    CAS  PubMed  Google Scholar 

  12. Rammensee HG, Weinschenk T, Gouttefangeas C, Stevanovic S . Towards patient-specific tumor antigen selection for vaccination. Immunol Rev 2002; 188: 164–176.

    CAS  PubMed  Google Scholar 

  13. Jager E, Jager D, Knuth A . Antigen-specific immunotherapy and cancer vaccines. Int J Cancer 2003; 106: 817–820.

    PubMed  Google Scholar 

  14. Wang F et al. Phase I trial of a MART-1 peptide vaccine with incomplete Freund's adjuvant for resected high-risk melanoma. Clin Cancer Res 1999; 5: 2756–2765.

    CAS  PubMed  Google Scholar 

  15. Banchereau J et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 2001; 61: 6451–6458.

    CAS  PubMed  Google Scholar 

  16. Thurner B et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999; 190: 1669–1678.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosenberg SA et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4: 321–327.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ulmer JB et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993; 259: 1745–1749.

    CAS  PubMed  Google Scholar 

  19. Ulmer JB et al. Protective immunity by intramuscular injection of low doses of influenza virus DNA vaccines. Vaccine 1994; 12: 1541–1544.

    CAS  PubMed  Google Scholar 

  20. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA . DNA vaccines. Annu Rev Immunol 1997; 15: 617–648.

    CAS  PubMed  Google Scholar 

  21. Leitner WW, Thalhamer J . DNA vaccines for non-infectious diseases: new treatments for tumour and allergy. Expert Opin Biol Ther 2003; 3: 627–638.

    CAS  PubMed  Google Scholar 

  22. Rovero S et al. DNA vaccination against rat her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J Immunol 2000; 165: 5133–5142.

    CAS  PubMed  Google Scholar 

  23. Piechocki MP, Ho YS, Pilon S, Wei WZ . Human ErbB-2 (Her-2) transgenic mice: a model system for testing Her-2 based vaccines. J Immunol 2003; 171: 5787–5794.

    CAS  PubMed  Google Scholar 

  24. Gallo P et al. Xenogeneic immunization in mice using HER2 DNA delivered by an adenoviral vector. Int J Cancer 2004; 113: 67–77.

    Google Scholar 

  25. Berzofsky JA et al. Progress on new vaccine strategies against chronic viral infections. J Clin Invest 2004; 114: 450–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Finn OJ, Forni G . Prophylactic cancer vaccines. Curr Opin Immunol 2002; 14: 172–177.

    CAS  PubMed  Google Scholar 

  27. Timmerman JM et al. Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res 2002; 62: 5845–5852.

    CAS  PubMed  Google Scholar 

  28. Conry RM et al. Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients. Clin Cancer Res 2002; 8: 2782–2787.

    CAS  PubMed  Google Scholar 

  29. Rizzuto G et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci USA 1999; 96: 6417–6422.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ribas A, Butterfield LH, Glaspy JA, Economou JS . Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol 2003; 21: 2415–2432.

    CAS  PubMed  Google Scholar 

  31. Bonnet MC et al. Recombinant viruses as a tool for therapeutic vaccination against human cancers. Immunol Lett 2000; 74: 11–25.

    CAS  PubMed  Google Scholar 

  32. van der Burg SH et al. Induction of p53-specific immune responses in colorectal cancer patients receiving a recombinant ALVAC-p53 candidate vaccine. Clin Cancer Res 2002; 8: 1019–1027.

    CAS  PubMed  Google Scholar 

  33. Zhang WW . Development and application of adenoviral vectors for gene therapy of cancer. Cancer Gene Ther 1999; 6: 113–138.

    CAS  PubMed  Google Scholar 

  34. Benihoud K, Yeh P, Perricaudet M . Adenovirus vectors for gene delivery. Curr Opin Biotechnol 1999; 10: 440–447.

    CAS  PubMed  Google Scholar 

  35. Kootstra NA, Verma IM . Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol 2003; 43: 413–439.

    CAS  PubMed  Google Scholar 

  36. Russell WC . Update on adenovirus and its vectors. J Gen Virol 2000; 81: 2573–2604.

    CAS  PubMed  Google Scholar 

  37. Fontana L, Nuzzo M, Urbanelli L, Monaci P . General strategy for broadening adenovirus tropism. J Virol 2003; 77: 11094–11104.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Morse MA, Lyerly HK . DNA and RNA modified dendritic cell vaccines. World J Surg 2002; 26: 819–825.

    PubMed  Google Scholar 

  39. Colombo MP, Forni G . Cytokine gene transfer in tumor inhibition and tumor therapy: where are we now? Immunol Today 1994; 15: 48–51.

    CAS  PubMed  Google Scholar 

  40. Lollini PL, Forni G . Cancer immunoprevention: tracking down persistent tumor antigens. Trends Immunol 2003; 24: 62–66.

    CAS  PubMed  Google Scholar 

  41. Cho HI, Kim HJ, Oh ST, Kim TG . In vitro induction of carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes by dendritic cells transduced with recombinant adenoviruses. Vaccine 2003; 22: 224–236.

    CAS  PubMed  Google Scholar 

  42. Dietz AB, Vuk-Pavlovic S . High efficiency adenovirus-mediated gene transfer to human dendritic cells. Blood 1998; 91: 392–398.

    CAS  PubMed  Google Scholar 

  43. Sharma S et al. Interleukin-7 gene-modified dendritic cells reduce pulmonary tumor burden in spontaneous murine bronchoalveolar cell carcinoma. Hum Gene Ther 2003; 14: 1511–1524.

    CAS  PubMed  Google Scholar 

  44. Lucchini F et al. Early and multifocal tumors in breast, salivary, harderian and epididymal tissues developed in MMTY-Neu transgenic mice. Cancer Lett 1992; 64: 203–209.

    CAS  PubMed  Google Scholar 

  45. Di Fiore PP et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 1987; 237: 178–182.

    CAS  PubMed  Google Scholar 

  46. MacGregor RR et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis 1998; 178: 92–100.

    CAS  PubMed  Google Scholar 

  47. Hanke T et al. Enhancement of MHC class I-restricted peptide-specific T cell induction by a DNA prime/MVA boost vaccination regime. Vaccine 1998; 16: 439–445.

    CAS  PubMed  Google Scholar 

  48. Casimiro DR et al. Comparative immunogenicity in rhesus monkeys of DNA plasmid, recombinant vaccinia virus, and replication-defective adenovirus vectors expressing a human immunodeficiency virus type 1 gag gene. J Virol 2003; 77: 6305–6313.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Matsui M, Moriya O, Akatsuka T . Enhanced induction of hepatitis C virus-specific cytotoxic T lymphocytes and protective efficacy in mice by DNA vaccination followed by adenovirus boosting in combination with the interleukin-12 expression plasmid. Vaccine 2003; 21: 1629–1639.

    CAS  PubMed  Google Scholar 

  50. Sullivan NJ et al. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature 2003; 424: 681–684.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lubeck MD et al. Immunogenicity and efficacy testing in chimpanzees of an oral hepatitis B vaccine based on live recombinant adenovirus. Proc Natl Acad Sci USA 1989; 86: 6763–6767.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lubeck MD et al. Long-term protection of chimpanzees against high-dose HIV-1 challenge induced by immunization. Nat Med 1997; 3: 651–658.

    CAS  PubMed  Google Scholar 

  53. Ragot T et al. Replication-defective recombinant adenovirus expressing the Epstein–Barr virus (EBV) envelope glycoprotein gp340/220 induces protective immunity against EBV-induced lymphomas in the cottontop tamarin. J Gen Virol 1993; 74 (Part 3): 501–507.

    CAS  PubMed  Google Scholar 

  54. Shiver JW et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 2002; 415: 331–335.

    CAS  PubMed  Google Scholar 

  55. Caux C et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood 1997; 90: 1458–1470.

    CAS  PubMed  Google Scholar 

  56. Sallusto F, Lanzavecchia A . Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994; 179: 1109–1118.

    CAS  PubMed  Google Scholar 

  57. Dranoff G . GM-CSF-secreting melanoma vaccines. Oncogene 2003; 22: 3188–3192.

    CAS  PubMed  Google Scholar 

  58. Salgia R et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol 2003; 21: 624–630.

    PubMed  Google Scholar 

  59. Simons JW et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res 1999; 59: 5160–5168.

    CAS  PubMed  Google Scholar 

  60. Soiffer R et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003; 21: 3343–3350.

    Article  CAS  PubMed  Google Scholar 

  61. Simons JW et al. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res 1997; 57: 1537–1546.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee CT et al. Genetic immunotherapy of established tumors with adenovirus-murine granulocyte-macrophage colony-stimulating factor. Hum Gene Ther 1997; 8: 187–193.

    CAS  PubMed  Google Scholar 

  63. Nemunaitis J . GVAX (GMCSF gene modified tumor vaccine) in advanced stage non small cell lung cancer. J Control Release 2003; 91: 225–231.

    CAS  PubMed  Google Scholar 

  64. Nemunaitis J et al. Granulocyte-macrophage colony-stimulating factor gene-modified autologous tumor vaccines in non-small-cell lung cancer. J Natl Cancer Inst 2004; 96: 326–331.

    CAS  PubMed  Google Scholar 

  65. Fisher PB et al. mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biol Ther 2003; 2: S23–S37.

    CAS  PubMed  Google Scholar 

  66. Sauane M et al. Melanoma differentiation associated gene-7/interleukin-24 promotes tumor cell-specific apoptosis through both secretory and nonsecretory pathways. Cancer Res 2004; 64: 2988–2993.

    CAS  PubMed  Google Scholar 

  67. Gopalkrishnan R . INGN-241. Introgen. Curr Opin Investig Drugs 2002; 3: 1773–1777.

    CAS  PubMed  Google Scholar 

  68. Barouch DH et al. Plasmid chemokines and colony-stimulating factors enhance the immunogenicity of DNA priming-viral vector boosting human immunodeficiency virus type 1 vaccines. J Virol 2003; 77: 8729–8735.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hendren SK et al. Interferon-beta gene therapy improves survival in an immunocompetent mouse model of carcinomatosis. Surgery 2004; 135: 427–436.

    PubMed  Google Scholar 

  70. Chen Y et al. Induction of ErbB-2/neu-specific protective and therapeutic antitumor immunity using genetically modified dendritic cells: enhanced efficacy by cotransduction of gene encoding IL-12. Gene Therapy 2001; 8: 316–323.

    CAS  PubMed  Google Scholar 

  71. Ahn WS et al. A therapy modality using recombinant IL-12 adenovirus plus E7 protein in a human papillomavirus 16 E6/E7-associated cervical cancer animal model. Hum Gene Ther 2003; 14: 1389–1399.

    CAS  PubMed  Google Scholar 

  72. Oh YT, Chen DW, Dougherty GJ, McBride WH . Adenoviral interleukin-3 gene-radiation therapy for prostate cancer in mouse model. Int J Radiat Oncol Biol Phys 2004; 59: 579–583.

    CAS  PubMed  Google Scholar 

  73. Lohr F et al. Combination treatment of murine tumors by adenovirus-mediated local B7/IL12 immunotherapy and radiotherapy. Mol Ther 2000; 2: 195–203.

    CAS  PubMed  Google Scholar 

  74. Gyorffy S et al. Combined treatment of a murine breast cancer model with type 5 adenovirus vectors expressing murine angiostatin and IL-12: a role for combined anti-angiogenesis and immunotherapy. J Immunol 2001; 166: 6212–6217.

    CAS  PubMed  Google Scholar 

  75. Worgall S et al. Modification to the capsid of the adenovirus vector that enhances dendritic cell infection and transgene-specific cellular immune responses. J Virol 2004; 78: 2572–2580.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang L et al. An adenoviral vector cancer vaccine that delivers a tumor-associated antigen/CD40-ligand fusion protein to dendritic cells. Proc Natl Acad Sci USA 2003; 100: 15101–15106.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Havenga MJ et al. Improved adenovirus vectors for infection of cardiovascular tissues. J Virol 2001; 75: 3335–3342.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zabner J et al. A chimeric type 2 adenovirus vector with a type 17 fiber enhances gene transfer to human airway epithelia. J Virol 1999; 73: 8689–8695.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A . Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol 2000; 74: 2567–2583.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mercier GT et al. A chimeric adenovirus vector encoding reovirus attachment protein sigma1 targets cells expressing junctional adhesion molecule 1. Proc Natl Acad Sci USA 2004; 101: 6188–6193.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sumida SM et al. Neutralizing antibodies and CD8+ T lymphocytes both contribute to immunity to adenovirus serotype 5 vaccine vectors. J Virol 2004; 78: 2666–2673.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lemiale F et al. Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system. J Virol 2003; 77: 10078–10087.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fisher KD et al. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Therapy 2001; 8: 341–348.

    CAS  PubMed  Google Scholar 

  84. Mack CA et al. Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther 1997; 8: 99–109.

    CAS  PubMed  Google Scholar 

  85. Mastrangeli A et al. ‘Sero-switch’ adenovirus-mediated in vivo gene transfer: circumvention of anti-adenovirus humoral immune defenses against repeat adenovirus vector administration by changing the adenovirus serotype. Hum Gene Ther 1996; 7: 79–87.

    CAS  PubMed  Google Scholar 

  86. Kass-Eisler A et al. Circumventing the immune response to adenovirus-mediated gene therapy. Gene Therapy 1996; 3: 154–162.

    CAS  PubMed  Google Scholar 

  87. Parks R, Evelegh C, Graham F . Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Therapy 1999; 6: 1565–1573.

    CAS  PubMed  Google Scholar 

  88. Morral N et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci USA 1999; 96: 12816–12821.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Pinto AR et al. Induction of CD8+ T cells to an HIV-1 antigen through a prime boost regimen with heterologous E1-deleted adenoviral vaccine carriers. J Immunol 2003; 171: 6774–6779.

    CAS  PubMed  Google Scholar 

  90. Xiang Z et al. Novel, chimpanzee serotype 68-based adenoviral vaccine carrier for induction of antibodies to a transgene product. J Virol 2002; 76: 2667–2675.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Moffatt S, Hays J, HogenEsch H, Mittal SK . Circumvention of vector-specific neutralizing antibody response by alternating use of human and non-human adenoviruses: implications in gene therapy. Virology 2000; 272: 159–167.

    CAS  PubMed  Google Scholar 

  92. Farina SF et al. Replication-defective vector based on a chimpanzee adenovirus. J Virol 2001; 75: 11603–11613.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hofmann C et al. Ovine adenovirus vectors overcome preexisting humoral immunity against human adenoviruses in vivo. J Virol 1999; 73: 6930–6936.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Qin L et al. Adenovirus-mediated gene transfer of viral interleukin-10 inhibits the immune response to both alloantigen and adenoviral antigen. Hum Gene Ther 1997; 8: 1365–1374.

    CAS  PubMed  Google Scholar 

  95. Reid T, Warren R, Kirn D . Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther 2002; 9: 979–986.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Marshall E . Gene therapy death prompts review of adenovirus vector. Science 1999; 286: 2244–2245.

    CAS  PubMed  Google Scholar 

  97. Connolly JB . Conditionally replicating viruses in cancer therapy. Gene Therapy 2003; 10: 712–715.

    CAS  PubMed  Google Scholar 

  98. Rosenberg SA, Yang JC, Restifo NP . Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10: 909–915.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Broder H et al. MART-1 adenovirus-transduced dendritic cell immunization in a murine model of metastatic central nervous system tumor. J Neurooncol 2003; 64: 21–30.

    PubMed  Google Scholar 

  100. Okada N et al. Dendritic cells transduced with gp100 gene by RGD fiber-mutant adenovirus vectors are highly efficacious in generating anti-B16BL6 melanoma immunity in mice. Gene Therapy 2003; 10: 1891–1902.

    CAS  PubMed  Google Scholar 

  101. Chan RC et al. Transduction of dendritic cells with recombinant adenovirus encoding HCA661 activates autologous cytotoxic T lymphocytes to target hepatoma cells. Br J Cancer 2004; 90: 1636–1643.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Okada N et al. Immunological properties and vaccine efficacy of murine dendritic cells simultaneously expressing melanoma-associated antigen and interleukin-12. Cancer Gene Ther 2005; 12: 72–83.

    CAS  PubMed  Google Scholar 

  103. Duraiswamy J et al. Induction of therapeutic T-cell responses to subdominant tumor-associated viral oncogene after immunization with replication-incompetent polyepitope adenovirus vaccine. Cancer Res 2004; 64: 1483–1489.

    CAS  PubMed  Google Scholar 

  104. Tatsumi T et al. Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res 2003; 63: 6378–6386.

    CAS  PubMed  Google Scholar 

  105. Satoh T et al. Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model. Cancer Res 2003; 63: 7853–7860.

    CAS  PubMed  Google Scholar 

  106. Friese MA et al. MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res 2003; 63: 8996–9006.

    CAS  PubMed  Google Scholar 

  107. Meziane el K et al. Use of adenoviruses encoding CD40L or IL-2 against B cell lymphoma. Int J Cancer 2004; 111: 910–920.

    PubMed  Google Scholar 

  108. Trudel S et al. A phase I trial of adenovector-mediated delivery of interleukin-2 (AdIL-2) in high-risk localized prostate cancer. Cancer Gene Ther 2003; 10: 755–763.

    CAS  PubMed  Google Scholar 

  109. Merritt RE, Yamada RE, Crystal RG, Korst RJ . Augmenting major histocompatibility complex class I expression by murine tumors in vivo enhances antitumor immunity induced by an active immunotherapy strategy. J Thorac Cardiovasc Surg 2004; 127: 355–364.

    CAS  PubMed  Google Scholar 

  110. Andarini S et al. Adenovirus vector-mediated in vivo gene transfer of OX40 ligand to tumor cells enhances antitumor immunity of tumor-bearing hosts. Cancer Res 2004; 64: 3281–3287.

    CAS  PubMed  Google Scholar 

  111. Dummer R et al. Adenovirus-mediated intralesional interferon-gamma gene transfer induces tumor regressions in cutaneous lymphomas. Blood 2004; 104: 1631–1638.

    CAS  PubMed  Google Scholar 

  112. Liu Y et al. Combined alpha tumor necrosis factor gene therapy and engineered dendritic cell vaccine in combating well-established tumors. J Gene Med 2004; 6: 857–868.

    CAS  PubMed  Google Scholar 

  113. Khorana AA et al. A phase I trial of immunotherapy with intratumoral adenovirus-interferon-gamma (TG1041) in patients with malignant melanoma. Cancer Gene Ther 2003; 10: 251–259.

    CAS  PubMed  Google Scholar 

  114. Lumniczky K et al. Local tumor irradiation augments the antitumor effect of cytokine-producing autologous cancer cell vaccines in a murine glioma model. Cancer Gene Ther 2002; 9: 44–52.

    CAS  PubMed  Google Scholar 

  115. Trudel S et al. Adenovector engineered interleukin-2 expressing autologous plasma cell vaccination after high-dose chemotherapy for multiple myeloma – a phase 1 study. Leukemia 2001; 15: 846–854.

    CAS  PubMed  Google Scholar 

  116. DeLong P et al. Use of cyclooxygenase-2 inhibition to enhance the efficacy of immunotherapy. Cancer Res 2003; 63: 7845–7852.

    CAS  PubMed  Google Scholar 

  117. Merritt RE et al. Cisplatin augments cytotoxic T-lymphocyte-mediated antitumor immunity in poorly immunogenic murine lung cancer. J Thorac Cardiovasc Surg 2003; 126: 1609–1617.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is funded by Italian Ministero dell’Istruzione, dell’Università e della Ricerca; Grant Number: FIRB RBME017BC4.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallo, P., Dharmapuri, S., Cipriani, B. et al. Adenovirus as vehicle for anticancer genetic immunotherapy. Gene Ther 12 (Suppl 1), S84–S91 (2005). https://doi.org/10.1038/sj.gt.3302619

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302619

Keywords

This article is cited by

Search

Quick links