Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Conference Paper
  • Published:

Retroviral vector production in the National Gene Vector Laboratory at Indiana University

Abstract

The National Gene Vector Laboratory (NGVL) is a US National Institutes of Health initiative charged with providing clinical grade vectors for gene therapy trials. The program was started in 1995 and Indiana University has served as the production site for retroviral vectors and is also accepting applications for production of lentiviral vectors. The facility is designed to produce vectors for Phase I and Phase II clinical trials with the specific mandate to facilitate investigator-initiated research for academic institutions. To date, the facility has generated over 30 Master Cell Banks for gene therapy investigators throughout the United States. This required the facility to develop a system that can adapt to the varied needs of investigators, most of whom request different vector backbones, packaging cell lines, final product volumes, and media. In this review, we will illustrate some of the experiences of the Indiana University NGVL during the generation of retroviral vectors using murine-based packaging cell lines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Williams DA . Expression of introduced genetic sequences in hematopoetic cells following retroviral-mediated gene transfer. Hum Gene Ther 1990; 1: 229–239.

    Article  CAS  PubMed  Google Scholar 

  2. Miller AD . Human gene therapy comes of age. Nature 1992; 357: 455–460.

    Article  CAS  PubMed  Google Scholar 

  3. Mulligan RC . The basic science of gene therapy. Science 1993; 260: 926–932.

    Article  CAS  PubMed  Google Scholar 

  4. Rosenberg SA et al. Gene transfer into humans-immunotherapy of patients with advanced melanoma, using tumor infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990; 323: 570–578.

    Article  CAS  PubMed  Google Scholar 

  5. Mann R, Mulligan RC, Baltimore D . Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 1983; 33: 153–159.

    Article  CAS  PubMed  Google Scholar 

  6. Watanabe S, Temin HM . Construction of a helper cell line for avian reticuloendotheliosis virus cloning vectors. Mol Cell Biol 1983; 3: 2241–2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miller AD . Retrovirus packaging cells. Hum Gene Ther 1990; 1: 5–14.

    Article  CAS  PubMed  Google Scholar 

  8. Sanburn N, Cornetta K . Rapid titer determination using quantitative real-time PCR. Gene Therapy 1999; 6: 1340–1345.

    Article  CAS  PubMed  Google Scholar 

  9. Reeves L, Smucker P, Cornetta K . Packaging cell line charateristics and optimizing retroviral vector titer: the National Gene Vector Laboratory experience. Hum Gene Ther 2000; 11: 2093–2103.

    Article  CAS  PubMed  Google Scholar 

  10. Kotani H et al. Improved methods of retroviral vector transduction and production for gene therapy. Hum Gene Ther 1994; 5: 19–28.

    Article  CAS  PubMed  Google Scholar 

  11. Merten OW . State-of-the-art of the production of retroviral vectors. J Gene Med 2004; 6: S105–S124.

    Article  CAS  PubMed  Google Scholar 

  12. Le Doux JM, Morgan JR, Snow RG, Yarmush ML . Proteoglycans secreted by packaging cell lines inhibit retrovirus infection. J Virol 1997; 70: 6468–6473.

    Google Scholar 

  13. Reeves L, Cornetta K . Clinical retroviral vector production: step filtration using clinically approved filters improves titers. Gene Therapy 2000; 7: 1993–1998.

    Article  CAS  PubMed  Google Scholar 

  14. Cornetta K . Safety aspects of human gene therapy. Br J Haematol 1992; 80: 421–426.

    Article  CAS  PubMed  Google Scholar 

  15. Donahue RE et al. Helper virus induction T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 1992; 176: 1125–1135.

    Article  CAS  PubMed  Google Scholar 

  16. Cavazzana-Calvo M et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  PubMed  Google Scholar 

  17. Hacein-Bey-Abina S et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  PubMed  Google Scholar 

  18. Hacein-Bey-Abina S et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419 [erratum appears in Science. 2003;2302, 2568].

    Article  CAS  PubMed  Google Scholar 

  19. Hacein-Bey-Abina S et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002; 346: 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  20. Berns A . Good news for gene therapy. N Engl J Med 2004; 350: 1679–1680.

    Article  CAS  PubMed  Google Scholar 

  21. Dave UP, Jenkins NA, Copeland NG . Gene therapy insertional mutagenesis insights. Science 2004; 303: 333.

    Article  PubMed  Google Scholar 

  22. Muenchau DD et al. Analysis of retroviral packaging lines for generationof replication-competent virus. Virology 1990; 176: 262–265.

    Article  CAS  PubMed  Google Scholar 

  23. Bodine DM et al. Development of a high-titer retrovirus producer cell line capable of gene transfer into rhesus monkey hematopoietic stem cells. Proc Natl Acad Sci USA 1990; 87: 3738–3742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scarpa M et al. Characterization of recombinant helper retroviruses from Moloney-based vectors in ecotropic and amphotropic packaging cell lines. Virology 1991; 180: 849–852.

    Article  CAS  PubMed  Google Scholar 

  25. Otto E et al. Characterization of a replication-competent retrovirus resulting from recombination of packaging and vector sequences. Hum Gene Ther 1994; 5: 567–575.

    Article  CAS  PubMed  Google Scholar 

  26. Bosselman RA et al. Replication-defective chimeric helper proviruses and factors affecting generation of competent virus: expression of Moloney Leukemia Virus structural genes via the metallothionein promoter. Mol Cell Biol 1987; 7: 1797–1806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Markowitz D, Goff S, Bank A . A safe packaging line for gene transfer: seperating viral genes on two different plasmids. J Virol 1988; 62: 1120–1124.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Markowitz D, Goff S, Bank A . Construction and use of a safe and efficient amphotropic packaging line. Virology 1988; 167: 400–406.

    Article  CAS  PubMed  Google Scholar 

  29. Danos O, Mulligan RC . Safe and efficient generation of recombinant retroviruses with amphotroic and ecotropic host ranges. Proc Natl Acad Sci USA 1988; 85: 6460–6464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller AD, Rosman GJ . Improved retroviral vectors for gene transfer and exprssion. BioTechniques 1989; 7: 980–990.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Miller AD et al. Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol 1991; 65: 2220–2224.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chong H, Starkey W, Vile RG . A replication-competent retrovirus arising from a split-function packaging cell line was generated by recombination events between the vector, one of the packaging constructs, and endogenous retroviral sequences. J Virol 1998; 72: 2663–2670.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Garrett E et al. Characterization of recombinant events leading to the production of an ecotropic replication-competent retrovirus in a GP+envAM12-derived producer cell line. Virology 2000; 266: 170–179.

    Article  CAS  PubMed  Google Scholar 

  34. Wilson CA, Ng T, Miller AE . Evaluation of recommendations for replication-competent retrovirus testing associated with use of retroviral vectors. Hum Gene Ther 1997; 8: 869–874.

    Article  CAS  PubMed  Google Scholar 

  35. Bassin RH et al. Normal DBA/2 mouse cells synthesize a glycoprotein which interferes with MCF virus infection. Virology 1982; 123: 139–151.

    Article  CAS  PubMed  Google Scholar 

  36. Cornetta K et al. Amphotropic murine leukemia retrovirus is not an acute pathogen for primates. Hum Gene Ther 1990; 1: 13–26.

    Article  Google Scholar 

  37. Cornetta K et al. Infection of human cells with murine amphotropic replication-competent retroviruses. Hum Gene Ther 1993; 4: 579–588.

    Article  CAS  PubMed  Google Scholar 

  38. Printz M et al. Recombinant retroviral vector interferes with the detection of amphotropic replication competent retrovirus in standard culture assays. Gene Therapy 1995; 2: 143–150.

    CAS  PubMed  Google Scholar 

  39. Forestell SP, Dando JS, Bohnlein E, Rigg RJ . Improved detection of replication-competent retrovirus. J Virol Methods 1996; 60: 171–178.

    Article  CAS  PubMed  Google Scholar 

  40. Miller AD et al. A novel murine retrovirus identified during testing for helper virus in human gene transfer trials. J Virol 1996; 70: 1804–1809.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Morgan RA, Cornetta K, Anderson WF . Application of polymerase chain reaction in retroviral-mediated gene transfer and the analysis of gene-marked human TIL cells. Hum Gene Ther 1990; 1: 136–149.

    Article  Google Scholar 

  42. Martineau D et al. Evaluation of PCR and ELISA assays for screening clinical trial subjects for recplication competent retrovirus. Hum Gene Ther 1997; 8: 1231–1241.

    Article  CAS  PubMed  Google Scholar 

  43. Long Z et al. Biosafety monitoring of patients receiving intracerebral injections of murine retroviral vector producer cells. Hum Gene Ther 1998; 20: 1165–1172.

    Article  Google Scholar 

  44. Reeves L et al. Detection of ecotropic replication-competent retroviruses: comparison of S+/L− and marker rescue assays. Hum Gene Ther 2002; 13: 1783–1790.

    Article  CAS  PubMed  Google Scholar 

  45. Wilson C, Reitz MS, Okayama H, Eiden MV . Formation of infectious hybrid virions with gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Molony Murine Leukemia Virus. J Virol 1989; 63: 2374–2378.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bayle JY et al. High-efficiency gene transfer to primary monkey airway epithelial cells with retrovirus vectors using the gibbon ape leukemia virus receptor. Hum Gene Ther 1993; 4: 161–170.

    Article  CAS  PubMed  Google Scholar 

  47. von Kalle C et al. Increased gene transfer into human hematopoietic progenitor cells by extended in vitro exposure to a pseudotyped retroviral vector. Blood 1994; 84: 2890–2897.

    CAS  PubMed  Google Scholar 

  48. Bauer Jr TR, Miller AD, Hickstein DD . Improved transfer of the leukocyte integrin CD18 subunit into hematopoietic cell lines by using retroviral vectors having a Gibbon Ape leukemia virus envelope. Blood 1995; 86: 2379–2387.

    CAS  PubMed  Google Scholar 

  49. Bunnell BA et al. High-efficiency retroviral-mediated gene transfer into human and non-human primate peripheral blood lymphocytes. Proc Natl Acad Sci USA 1995; 92: 7739–7743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen J, Reeves L, Cornetta K . Safety testing for replication-competent retrovirus (RCR) associated with Gibbon Ape leukemia virus pseudotyped retroviral vectors. Hum Gene Ther 2001; 12: 61–70.

    Article  CAS  PubMed  Google Scholar 

  51. Cosset F et al. High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 1995; 69: 7430–7436.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. DePolo NJ et al. VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Mol Ther 2000; 2: 218–222.

    Article  CAS  PubMed  Google Scholar 

  53. Sandrin V et al. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 2002; 100: 823–832.

    Article  CAS  PubMed  Google Scholar 

  54. Goerner M et al. Sustained multilineage gene persistence and expression in dogs transplanted with CD34(+) marrow cells transduced by RD114-pseudotyped oncoretrovirus vectors. Blood 2001; 98: 2065–2070.

    Article  CAS  PubMed  Google Scholar 

  55. Kelly PF et al. Highly efficient gene transfer into cord blood nonobese diabetic/severe combined immunodeficiency repopulating cells by oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein. Blood 2000; 96: 1206–1214.

    CAS  PubMed  Google Scholar 

  56. Duffy L, Koop S, Fyffe J, Cornetta K . Extended S+/L− assay for detecting replication competent retroviruses (RCR) pseudotyped with the RD114 viral envelope. Preclinica 2003; May/June: 53–59.

  57. Bonham L, Wolgamot G, Miller AD . Molecular cloning of Mus dunni Endogenous Virus: an unusual retrovirus in a new murine viral interference group with a wide host range. J Virol 1997; 71: 4663–4670.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen J et al. Packaging cell line DNA contamination of vector supernatants: implication for laboratory and clinical research. Virology 2001; 282: 186–197.

    Article  CAS  PubMed  Google Scholar 

  59. Davis JL et al. Retroviral particles produced from a stable human-derived packaging cell line transduce target cells with very high efficiencies. Hum Gene Ther 1997; 8: 1459–1467.

    Article  CAS  PubMed  Google Scholar 

  60. Rigg RJ et al. A novel human amphotropic packaging cell line: high titer, complement resistance and improved safety. Virology 1996; 218: 290–295.

    Article  CAS  PubMed  Google Scholar 

  61. Yang S et al. Generation of retroviral vector for clinical studies using transient transfection. Hum Gene Ther 1999; 10: 123–132.

    Article  CAS  PubMed  Google Scholar 

  62. Ory DS, Neugeboren BA, Mulligan RC . A stable human derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G psuedotypes. Proc Natl Acad Sci USA 1996; 93: 11400–11406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu H et al. Inducible human immunodeficiency virus type 1 packaging cell lines. J Virol 1996; 70: 4530–4537.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kafri T et al. A packaging cell line for lentivirus vectors. J Virol 1999; 73: 576–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Klages N, Zufferey R, Trono D . A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol Ther 2000; 2: 170–176.

    Article  CAS  PubMed  Google Scholar 

  66. Bowles NE et al. A simple and efficient method for concentration and purification of recombinant retrovirus for increased hepatocyte transduction in vivo. Hum Gene Ther 1996; 7: 1735–1742.

    Article  CAS  PubMed  Google Scholar 

  67. McGrath M, Witte O, Pincus T, Weissman IL . Retrovirus purification: method that conserves encelope glycoprotein and maximizes infectivity. J Virol 1978; 25: 923–927.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lyddiatt A, O'Sullivan DA . Biochemical recovery and purification of gene therapy vectors. Curr Opini Biotechnol 1998; 9: 177–185.

    Article  CAS  Google Scholar 

  69. Hammar L . Concentration of biomaterials: virus concentration and viral protein isolation. Meth Enzymol 1994; 228: 640–658.

    Article  CAS  Google Scholar 

  70. Abonour R et al. Efficient retroviral-mediated MDR-1 gene transfer into autologous human long-term repopulating hematopoietic stem cells. Nat Med 2000; 6: 652–658.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Indiana University Vector Production Facility is a NIH designated National Gene Vector Laboratory (U42 RR11148) and this work was supported, in part, by a Core Centers of Excellence in Molecular Hematology (CCEMH) grant (PHS P50 DK49218) and a core laboratory supporting grant (PHS P01 HL53586). KC is supported in part by the Indiana Genomics Initiative (INGEN) created through a grant from the Lilly Endowment, Inc.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornetta, K., Matheson, L. & Ballas, C. Retroviral vector production in the National Gene Vector Laboratory at Indiana University. Gene Ther 12 (Suppl 1), S28–S35 (2005). https://doi.org/10.1038/sj.gt.3302613

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302613

Keywords

This article is cited by

Search

Quick links