Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RNA interference against Hec1 inhibits tumor growth in vivo

Abstract

Hec1 (highly expressed in cancer) plays an important role in chromosome segregation by interacting with a subset of checkpoint proteins that survey proper chromosome alignment and bipolar spindle attachment. In order to disrupt mitotic progression of tumor cell lines, we have used retrovirus and adenovirus vectors that inhibit Hec1 synthesis. Vector-expressed short hairpin RNAs (shRNAs) caused very efficient depletion of the target protein, cellular arrest and considerable mitotic catastrophe induction 96 h post infection in human cervix-adenocarcinoma (HeLa) and glioblastoma (U-373-MG) cell lines. Furthermore, adenocarcinomas induced in the flanks of nude mice show significant reduction in size compared with control when treated with either Hec1-shRNA retroviruses or adenoviruses. These results indicate that depletion of Hec1 could be used as a new strategy to block the dividing cell, and therefore against cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

RNAi:

RNA interference

dsRNA:

double-stranded RNA

shRNAs:

short hairpin RNAs

RISC:

RNA-induced silencing complex

Hec1:

highly expressed in cancer

pRiHec1:

retroviral plasmid carrying the DNA corresponding to Hec1-shRNA.

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNAi in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    Article  CAS  Google Scholar 

  2. Cerutti H . RNA interference: traveling in the cell and gaining functions? TRENDS Genet 2003; 19: 39–46.

    Article  CAS  Google Scholar 

  3. Hannon GJ, Rossi JJ . Unlocking the potential of the human genome with RNA interference. Nature 2004; 431: 371–378.

    Article  CAS  Google Scholar 

  4. Izquierdo M . Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther 2005; 12: 217–227.

    Article  CAS  Google Scholar 

  5. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  Google Scholar 

  6. Hannon GJ . RNA interference. Nature 2002; 418: 244–251.

    Article  CAS  Google Scholar 

  7. McManus MT, Sharp PA . Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002; 3: 737–747.

    Article  CAS  Google Scholar 

  8. Brummelkamp TR, Bernards R, Agami RA . System for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  Google Scholar 

  9. Brummelkamp TR, Bernards R, Agami R . Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002; 2: 243–247.

    Article  CAS  Google Scholar 

  10. Devroe E, Silver PA . Retrovirus-delivered shRNA. BMC Biotechnol 2002; 2: 15–20.

    Article  Google Scholar 

  11. Cleveland DW, Mao Y, Sullivan KF . Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 2003; 112: 407–421.

    Article  CAS  Google Scholar 

  12. Obuse C, Iwasaki O, Kiyomitsu T, Goshima G, Toyoda Y, Yanagida M . A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat Cell Biol 2004; 6: 1135–1141.

    Article  CAS  Google Scholar 

  13. Steensgaard P, Garre M, Muradore I, Transidico P, Nigg EA, Kitagawa K et al. Sgt1 is required for human kinetochore assembly. EMBO Rep 2004; 5: 626–631.

    Article  CAS  Google Scholar 

  14. Wigge PA, Kilmartin JJ . The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 2001; 152: 349–360.

    Article  CAS  Google Scholar 

  15. Martin-Lluesma S, Stucke VM, Nigg EA . Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 2002; 297: 2267–2270.

    Article  CAS  Google Scholar 

  16. DeLuca JG, Moree B, Hickey JM, Kilmartin JV, Salmon ED . hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J Cell Biol 2002; 159: 549–554.

    Article  CAS  Google Scholar 

  17. DeLuca JG, Howell BJ, Canman JC, Hickey JM, Fang G, Salmon ED . Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. Curr Biol 2003; 13: 2103–2109.

    Article  CAS  Google Scholar 

  18. Chen Y, Riley DJ, Zheng L, Chen PL, Lee WH . Phosphorilation of the mitotic regulator protein Hec1 by Nek2 kinase is essential for faithful chromosome segregation. J Biol Chem 2002; 277: 49408–49416.

    Article  CAS  Google Scholar 

  19. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 1990; 10: 4239–4242.

    Article  CAS  Google Scholar 

  20. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD et al. Mutations of mitotic checkpoint genes in human cancers. Nature 1998; 392: 300–303.

    Article  CAS  Google Scholar 

  21. Lengauer C, Kinzler KW, Vogelstein B . Genetic instabilities in human cancers. Nature 1998; 396: 643–649.

    Article  CAS  Google Scholar 

  22. de la Hoz C, Baroja A . Proliferative behaviour of high-ploidy cells in two murine tumour lines. J Cell Sci 1993; 104: 31–36.

    PubMed  Google Scholar 

  23. Li K, Lin S, Brunicardi FC, Seu P . Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res 2003; 63: 3593–3597.

    CAS  PubMed  Google Scholar 

  24. Wilda M, Fuchs U, Wossmann W, Borkhardt A . Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 2002; 21: 5716–5724.

    Article  CAS  Google Scholar 

  25. Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M . Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 2003; 101: 1566–1569.

    Article  CAS  Google Scholar 

  26. Nieth C, Priebsch A, Stege A, Lage H . Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett 2003; 545: 144–150.

    Article  CAS  Google Scholar 

  27. Duxbury MS, Ito H, Benoit E, Zinner MJ, Ashley SW, Whang EE . RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene 2004; 23: 1539–1548.

    Article  CAS  Google Scholar 

  28. Filleur S, Courtin A, Ait-Si-Ali S, Guglielmi J, Merle C, Harel-Bellan A et al. siRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res 2003; 63: 3919–3922.

    CAS  Google Scholar 

  29. Muruve DA . The innate immune response to adenovirus vectors. Human Gene Ther 2004; 15: 1157–1166.

    Article  CAS  Google Scholar 

  30. Zhou H, Xia XG, Xu Z . An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Res 2005; 33: doi: 10.1093/nar/gni061.

  31. Lakka SS, Gondi CS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M et al. Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 2004; 23: 4681–4689.

    Article  CAS  Google Scholar 

  32. Izquierdo M, Cortes ML, Martin V, de Felipe P, Izquierdo JM, Perez-Higueras A et al. Gene therapy in brain tumours: implications of the size of glioblastoma on its curability. Acta Neurochir Suppl 1997; 68: 111–117.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr John Kilmartin (MRC Laboratory of Molecular Biology, Cambridge, UK) for providing anti-Hec1 antibody several times. This study was supported by a grant from the Comunidad de Madrid 08.1/0039.1/2003 and from the Ministerio de Ciencia y Tecnología SAF 2002-01100. The Centro de Biología Molecular S.O. is also the recipient of an institutional grant from the Ramón Areces Foundation. EN Gurzov was supported by a grant from the Fundación Carolina-Ministerio de Asuntos Exteriores de España.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Izquierdo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurzov, E., Izquierdo, M. RNA interference against Hec1 inhibits tumor growth in vivo. Gene Ther 13, 1–7 (2006). https://doi.org/10.1038/sj.gt.3302595

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302595

Keywords

This article is cited by

Search

Quick links