Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Protein toxins: intracellular trafficking for targeted therapy

Abstract

The immunotoxin approach is based on the use of tumor-targeting ligands or antibodies that are linked to the catalytic (toxic) moieties of bacterial or plant protein toxins. In this review, we first discuss the current state of clinical development of immunotoxin approaches describing the results obtained with the two toxins most frequently used: diphtheria and Pseudomonas toxin-derived proteins. In the second part of the review, a novel concept will be presented in which the roles are inverted: nontoxic receptor-binding toxin moieties are used for the targeting of therapeutic and diagnostic compounds to cancer or immune cells. The cell biological basis of these novel types of toxin-based therapeutics will be discussed, and we will summarize ongoing preclinical and clinical testing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Dyba M, Tarasova NI, Michejda CJ . Small molecule toxins targeting tumor receptors. Curr Pharm Des 2004; 10: 2311–2334.

    Article  CAS  PubMed  Google Scholar 

  2. Vallera DA et al. Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst 2002; 94: 597–606.

    Article  CAS  PubMed  Google Scholar 

  3. Morokoff AP, Novak U . Targeted therapy for malignant gliomas. J Clin Neurosci 2004; 11: 807–818.

    Article  PubMed  Google Scholar 

  4. Frankel AE et al. Immunotoxin therapy of hematologic malignancies. Semin Oncol 2003; 30: 545–557.

    Article  CAS  PubMed  Google Scholar 

  5. Chovnick A et al. A recombinant, membrane-acting immunotoxin. Cancer Res 1991; 51: 465–467.

    CAS  PubMed  Google Scholar 

  6. Choo AB, Dunn RD, Broady KW, Raison RL . Soluble expression of a functional recombinant cytolytic immunotoxin in insect cells. Protein Exp Purif 2002; 24: 338–347.

    Article  CAS  Google Scholar 

  7. Gasanov SE, Rael ED, Gasanov NE, Vernon LP . In vitro evaluation of Pyrularia thionin-anti-CD5 immunotoxin. Cancer Immunol Immunother 1995; 41: 122–128.

    CAS  PubMed  Google Scholar 

  8. Hinman CL, Tang HP . A membrane-lytic immunoconjugate selective for human tumor T-lymphocytes. Int J Immunopharmacol 1998; 20: 467–478.

    Article  CAS  PubMed  Google Scholar 

  9. LeMaistre CF et al. Phase I trial of a ligand fusion-protein (DAB389IL-2) in lymphomas expressing the receptor for interleukin-2. Blood 1998; 91: 399–405.

    CAS  PubMed  Google Scholar 

  10. Olsen E et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol 2001; 19: 376–388.

    Article  CAS  PubMed  Google Scholar 

  11. Frankel AE et al. A phase II study of DT fusion protein denileukin diftitox in patients with fludarabine-refractory chronic lymphocytic leukemia. Clin Cancer Res 2003; 9: 3555–3561.

    CAS  PubMed  Google Scholar 

  12. Dang NH et al. Phase II study of denileukin diftitox for relapsed/refractory B-Cell non-Hodgkin's lymphoma. J Clin Oncol 2004; 22: 4095–4102.

    Article  CAS  PubMed  Google Scholar 

  13. Frankel AE et al. Phase I trial of a novel diphtheria toxin/granulocyte macrophage colony-stimulating factor fusion protein (DT388GMCSF) for refractory or relapsed acute myeloid leukemia. Clin Cancer Res 2002; 8: 1004–1013.

    CAS  PubMed  Google Scholar 

  14. Weber F et al. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol 2003; 64: 125–137.

    PubMed  Google Scholar 

  15. Rand RW et al. Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res 2000; 6: 2157–2165.

    CAS  PubMed  Google Scholar 

  16. Sampson JH et al. Progress report of a phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J Neurooncol 2003; 65: 27–35.

    Article  PubMed  Google Scholar 

  17. Posey JA et al. A phase I trial of the single-chain immunotoxin SGN-10 (BR96 sFv-PE40) in patients with advanced solid tumors. Clin Cancer Res 2002; 8: 3092–3099.

    CAS  PubMed  Google Scholar 

  18. Kreitman RJ et al. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol 2000; 18: 1622–1636.

    Article  CAS  PubMed  Google Scholar 

  19. Azemar M et al. Regression of cutaneous tumor lesions in patients intratumorally injected with a recombinant single-chain antibody-toxin targeted to ErbB2/HER2. Breast Cancer Res Treat 2003; 82: 155–164.

    Article  CAS  PubMed  Google Scholar 

  20. Baluna R et al. The effect of a monoclonal antibody coupled to ricin A chain-derived peptides on endothelial cells in vitro: insights into toxin-mediated vascular damage. Exp Cell Res 2000; 258: 417–424.

    Article  CAS  PubMed  Google Scholar 

  21. Siegall CB et al. Characterization of vascular leak syndrome induced by the toxin component of Pseudomonas exotoxin-based immunotoxins and its potential inhibition with nonsteroidal anti-inflammatory drugs. Clin Cancer Res 1997; 3: 339–345.

    CAS  PubMed  Google Scholar 

  22. Amlot PL et al. A phase I study of an anti-CD22-deglycosylated ricin A chain immunotoxin in the treatment of B-cell lymphomas resistant to conventional therapy. Blood 1993; 82: 2624–2633.

    Article  CAS  PubMed  Google Scholar 

  23. Kreitman RJ et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med 2001; 345: 241–247.

    Article  CAS  PubMed  Google Scholar 

  24. Sausville EA et al. Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma: a phase I study. Blood 1995; 85: 3457–3465.

    Article  CAS  PubMed  Google Scholar 

  25. Fenstermacher J, Kaye T . Drug ‘diffusion’ within the brain. Ann NY Acad Sci 1988; 531: 29–39.

    Article  CAS  PubMed  Google Scholar 

  26. Hall PD et al. Antibody response to DT-GM, a novel fusion toxin consisting of a truncated diphtheria toxin (DT) linked to human granulocyte–macrophage colony stimulating factor (GM), during a phase I trial of patients with relapsed or refractory acute myeloid leukemia. Clin Immunol 2001; 100: 191–197.

    Article  CAS  PubMed  Google Scholar 

  27. Brodsky FM et al. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 2001; 17: 517–568.

    Article  CAS  PubMed  Google Scholar 

  28. Moya M et al. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol 1985; 101: 548–559.

    Article  CAS  PubMed  Google Scholar 

  29. Abrami L et al. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J Cell Biol 2003; 160: 321–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Naglich JG, Metherall JE, Russell DW, Eidels L . Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 1992; 69: 1051–1061.

    Article  CAS  PubMed  Google Scholar 

  31. Bradley KA et al. Identification of the cellular receptor for anthrax toxin. Nature 2001; 414: 225–229.

    Article  CAS  PubMed  Google Scholar 

  32. Montesano R, Roth J, Robert A, Orci L . Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 1982; 296: 651–653.

    Article  CAS  PubMed  Google Scholar 

  33. Tran D et al. Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway. Proc Natl Acad Sci USA 1987; 84: 7957–7961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sandvig K, Olsnes S, Petersen OW, van Deurs B . Acidification of the cytosol inhibits endocytosis from coated pits. J Cell Biol 1987; 105: 679–689.

    Article  CAS  PubMed  Google Scholar 

  35. Saint-Pol A et al. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev Cell 2004; 6: 525–538.

    Article  CAS  PubMed  Google Scholar 

  36. Lauvrak SU, Torgersen ML, Sandvig K . Efficient endosome-to-Golgi transport of Shiga toxin is dependent on dynamin and clathrin. J Cell Sci 2004; 117: 2321–2331.

    Article  CAS  PubMed  Google Scholar 

  37. Nichols BJ et al. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol 2001; 153: 529–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kirkham M et al. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol 2005; 168: 465–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sandvig K et al. Endocytosis from coated pits of Shiga toxin: a glycolipid-binding protein from Shigella dysenteriae 1. J Cell Biol 1989; 108: 1331–1343.

    Article  CAS  PubMed  Google Scholar 

  40. Harder T, Scheiffele P, Verkade P, Simons K . Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 1998; 141: 929–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katagiri YU et al. Activation of src family kinase yes induced by Shiga toxin binding to globotriaosyl ceramide (Gb3/CD77) in low density, detergent-insoluble microdomains. J Biol Chem 1999; 274: 35278–35282.

    Article  CAS  PubMed  Google Scholar 

  42. Falguières T et al. Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent resistant membranes. Mol Biol Cell 2001; 12: 2453–2468.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Johannes L, Lamaze C . Clatrin-dependent or not: is it still the question? Traffic 2002; 3: 443–451.

    Article  CAS  PubMed  Google Scholar 

  44. Shogomori H, Futerman AH . Cholera toxin is found in detergent-insoluble rafts/domains at the cell surface of hippocampal neurons but is internalized via a raft-independent mechanism. J Biol Chem 2001; 276: 9182–9188.

    Article  CAS  PubMed  Google Scholar 

  45. Parton RG . Caveolae – from ultrastructure to molecular mechanisms. Nat Rev Mol Cell Biol 2003; 4: 162–167.

    Article  CAS  PubMed  Google Scholar 

  46. van Deurs B, Roepstorff K, Hommelgaard AM, Sandvig K . Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol 2003; 13: 92–100.

    Article  CAS  PubMed  Google Scholar 

  47. Oh P, McIntosh DP, Schnitzer JE . Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J Cell Biol 1998; 141: 101–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Henley JR, Krueger EW, Oswald BJ, McNiven MA . Dynamin-mediated internalization of caveolae. J Cell Biol 1998; 141: 85–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Singh RD et al. Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol Biol Cell 2003; 14: 3254–3265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thomsen P, Roepstorff K, Stahlhut M, van Deurs B . Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol Biol Cell 2002; 13: 238–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Orlandi PA, Fishman PH . Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 1998; 141: 905–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Torgersen ML, Skretting G, van Deurs B, Sandvig K . Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 2001; 114: 3737–3747.

    Article  CAS  PubMed  Google Scholar 

  53. Nichols BJ . A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex. Nat Cell Biol 2002; 15: 15.

    Google Scholar 

  54. Le PU, Guay G, Altschuler Y, Nabi IR . Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J Biol Chem 2002; 277: 3371–3379.

    Article  CAS  PubMed  Google Scholar 

  55. Sharma DK et al. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell 2004; 15: 3114–3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pelkmans L, Kartenbeck J, Helenius A . Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 2001; 3: 473–483.

    Article  CAS  PubMed  Google Scholar 

  57. Sabharanjak S, Sharma P, Parton RG, Mayor S . GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2002; 2: 411–423.

    Article  CAS  PubMed  Google Scholar 

  58. Lord JM, Roberts LM . Retrograde transport: going against the flow. Curr Biol 1998; 8: R56–R58.

    Article  CAS  PubMed  Google Scholar 

  59. Sandvig K, van Deurs B . Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. EMBO J 2000; 19: 5943–5950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Johannes L, Goud B . Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum? Trends Cell Biol 1998; 8: 158–162.

    Article  CAS  PubMed  Google Scholar 

  61. Simpson JC et al. Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett 1999; 459: 80–84.

    Article  CAS  PubMed  Google Scholar 

  62. Wesche J, Rapak A, Olsnes S . Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J Biol Chem 1999; 274: 34443–34449.

    Article  CAS  PubMed  Google Scholar 

  63. Lord JM et al. Retrograde transport of toxins across the endoplasmic reticulum membrane. Biochem Soc Trans 2003; 31: 1260–1262.

    Article  CAS  PubMed  Google Scholar 

  64. Mallard F, Johannes L . Shiga toxin B-subunit as a tool to study retrograde transport. In: Philpott D, Ebel F (eds). Methods in Molecular Medicine. Shiga Toxin Methods and Protocols, Vol 73, Chapter 17. Humana Press: Totowa, New Jersey, 2002, pp 209–220.

    Google Scholar 

  65. Mallard F et al. Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J Cell Biol 2002; 156: 653–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tai G et al. Participation of syntaxin 5/Ykt6/GS28/GS15 SNARE complex in transport from the early/recycling endosome to the TGN. Mol Biol Cell 2004; 15: 4011–4022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Natarajan R, Linstedt AD . A cycling cis-Golgi protein mediates endosome-to-Golgi traffic. Mol Biol Cell 2004; 15: 4798–4806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu L, Tai G, Hong W . Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-Golgi network. Mol Biol Cell 2004; 15: 4426–4443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wolf AA, Fujinaga Y, Lencer WI . Uncoupling of the cholera toxin-G(M1) ganglioside receptor complex from endocytosis, retrograde Golgi trafficking, and downstream signal transduction by depletion of membrane cholesterol. J Biol Chem 2002; 277: 16249–16256.

    Article  CAS  PubMed  Google Scholar 

  70. Ramegowda B, Tesh VL . Differentiation-associated toxin receptor modulation, cytokine production, and sensitivity to Shiga-like toxins in human monocytes and monocytic cell lines. Infect Immun 1996; 64: 1173–1180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tesh VL, Ramegowda B, Samuel JE . Purified Shiga-like toxins induce expression of proinflammatory cytokines from murine peritoneal macrophages. Infect Immun 1994; 62: 5085–5094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoey DE et al. Verotoxin 1 binding to intestinal crypt epithelial cells results in localization to lysosomes and abrogation of toxicity. Cell Microbiol 2003; 5: 85–97.

    Article  CAS  PubMed  Google Scholar 

  73. Llorente A et al. Expression of mutant dynamin inhibits toxicity and transport of endocytosed ricin to the Golgi apparatus. J Cell Biol 1998; 140: 553–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Grimmer S, Iversen TG, van Deurs B, Sandvig K . Endosome to Golgi transport of ricin is regulated by cholesterol. Mol Biol Cell 2000; 11: 4205–4216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lauvrak SU, Llorente A, Iversen TG, Sandvig K . Selective regulation of the Rab9-independent transport of ricin to the Golgi apparatus by calcium. J Cell Sci 2002; 115: 3449–3456.

    Article  CAS  PubMed  Google Scholar 

  76. Birkeli KA et al. Endosome-to-Golgi transport is regulated by protein kinase A type II alpha. J Biol Chem 2003; 278: 1991–1997.

    Article  CAS  PubMed  Google Scholar 

  77. Pelkmans L, Burli T, Zerial M, Helenius A . Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 2004; 118: 767–780.

    Article  CAS  PubMed  Google Scholar 

  78. Pelham HR . The dynamic organisation of the secretory pathway. Cell Struct Funct 1996; 21: 413–419.

    Article  CAS  PubMed  Google Scholar 

  79. Cosson P, Letourneur F . Coatomer (COPI)-coated vesicles: role in intracellular transport and protein sorting. Curr Opin Cell Biol 1997; 9: 484–487.

    Article  CAS  PubMed  Google Scholar 

  80. Johannes L, Tenza D, Antony C, Goud B . Retrograde transport of KDEL-bearing B-fragment of Shiga toxin. J Biol Chem 1997; 272: 19554–19561.

    Article  CAS  PubMed  Google Scholar 

  81. Fujinaga Y et al. Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to the endoplasmic reticulum. Mol Biol Cell 2003; 14: 4783–4793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jackson ME et al. The KDEL retrieval system is exploited by pseudomonas exotoxin A, but not by Shiga-like toxin-1, during retrograde transport from the Golgi complex to the endoplasmic reticulum. J Cell Sci 1999; 112: 467–475.

    Article  CAS  PubMed  Google Scholar 

  83. Chen A, Hu T, Mikoryak C, Draper RK . Retrograde transport of protein toxins under conditions of COPI dysfunction. Biochim Biophys Acta 2002; 1589: 124–139.

    Article  CAS  PubMed  Google Scholar 

  84. Chen A, AbuJarour RJ, Draper RK . Evidence that the transport of ricin to the cytoplasm is independent of both Rab6A and COPI. J Cell Sci 2003; 116: 3503–3510.

    Article  CAS  PubMed  Google Scholar 

  85. Guermonprez P, Amigorena S . Pathways for antigen cross presentation. Springer Semin Immunopathol 2005; 26: 257–271.

    Article  PubMed  Google Scholar 

  86. Ackerman AL, Cresswell P . Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol 2004; 5: 678–684.

    Article  CAS  PubMed  Google Scholar 

  87. Smith DC et al. 1st class ticket to class I: protein toxin as pathfinders for antigen presentation. Traffic 2002; 3: 697–704.

    Article  CAS  PubMed  Google Scholar 

  88. Haicheur N et al. The B-subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class I restricted presentation of peptides derived from exogenous antigens. J Immunol 2000; 165: 3301–3308 (*principal investigators).

    Article  CAS  PubMed  Google Scholar 

  89. Lee R-S et al. Major histocompatibility complex class I presentation of exogenous soluble tumor antigen fused to the B-fragment of Shiga toxin. Eur J Immunol 1998; 28: 2726–2737.

    Article  CAS  PubMed  Google Scholar 

  90. Haicheur N et al. The B-subunit of Shiga toxin coupled to full-size protein elicits humoral and cellular immune responses associated with a TH1 dominant polarization. Int Immunol 2003; 15: 1161–1171 (*principal investigators).

    Article  CAS  PubMed  Google Scholar 

  91. Fayolle C et al. In vivo induction of CTL responses by recombinant adenylate cyclase of Bordetella pertussis carrying viral CD8+ T cell epitopes. J Immunol 1996; 156: 4697–4706.

    CAS  PubMed  Google Scholar 

  92. Saron MF et al. Anti-viral protection conferred by recombinant adenylate cyclase toxins from Bordetella pertussis carrying a CD8+ T cell epitope from lymphocytic choriomeningitis virus. Proc Natl Acad Sci USA 1997; 94: 3314–3319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fayolle C et al. Therapy of murine tumors with recombinant Bordetella pertussis adenylate cyclase carrying a cytotoxic T cell epitope. J Immunol 1999; 162: 4157–4162.

    CAS  PubMed  Google Scholar 

  94. Schlecht G et al. Antigen targeting to CD11b allows efficient presentation of CD4+ and CD8+ T cell epitopes and in vivo Th1-polarized T cell priming. J Immunol 2004; 173: 6089–6097.

    Article  CAS  PubMed  Google Scholar 

  95. Fayolle C, Bauche C, Ladant D, Leclerc C . Bordetella pertussis adenylate cyclase delivers chemically coupled CD8(+) T-cell epitopes to dendritic cells and elicits CTL in vivo. Vaccine 2004; 23: 604–614.

    Article  CAS  PubMed  Google Scholar 

  96. Guermonprez P et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med 2001; 193: 1035–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wiels J, Fellous M, Tursz T . Monoclonal antibody against a Burkitt lymphoma-associated antigen. Proc Natl Acad Sci USA 1981; 78: 6485–6488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cooling LL, Zhang de S, Naides SJ, Koerner TA . Glycosphingolipid expression in acute nonlymphocytic leukemia: common expression of Shiga toxin and parvovirus B19 receptors on early myeloblasts. Blood 2003; 101: 711–721.

    Article  CAS  PubMed  Google Scholar 

  99. Arab S et al. Expression of the verotoxin receptor glycolipid, globotriaosylceramide, in ovarian hyperplasias. Oncol Res 1997; 9: 553–563.

    CAS  PubMed  Google Scholar 

  100. LaCasse EC et al. Shiga-like toxin-1 receptor on human breast cancer, lymphoma, and myeloma and absence from CD34(+) hematopoietic stem cells: implications for ex vivo tumor purging and autologous stem cell transplantation. Blood 1999; 94: 2901–2910.

    CAS  PubMed  Google Scholar 

  101. Kang JL, Rajpert-De Meyts E, Wiels J, Skakkebaek NE . Expression of the glycolipid globotriaosylceramide (Gb3) in testicular carcinoma in situ. Virchows Arch 1995; 426: 369–374.

    Article  CAS  PubMed  Google Scholar 

  102. Farkas-Himsley H et al. The bacterial colicin active against tumor cells in vitro and in vivo is verotoxin 1. Proc Natl Acad Sci USA 1995; 92: 6996–7000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Salhia B et al. The treatment of malignant meningioma with verotoxin. Neoplasia 2002; 4: 304–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ishitoya S et al. Verotoxin induces rapid elimination of human renal tumor xenografts in SCID mice. J Urol 2004; 171: 1309–1313.

    Article  CAS  PubMed  Google Scholar 

  105. Heath-Engel HM, Lingwood CA . Verotoxin sensitivity of ECV304 cells in vitro and in vivo in a xenograft tumour model: VT1 as a tumour neovascular marker. Angiogenesis 2003; 6: 129–141.

    Article  CAS  PubMed  Google Scholar 

  106. LaCasse EC et al. Shiga-like toxin purges human lymphoma from bone marrow of severe combined immunodeficient mice. Blood 1996; 88: 1561–1567.

    Article  CAS  PubMed  Google Scholar 

  107. Bast DJ et al. Murine antibody responses to the verotoxin 1 B subunit: demonstration of major histocompatibility complex dependence and an immunodominant epitope involving phenylalanine 30. Infect Immun 1997; 65: 2978–2982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chart H, Law D, Rowe B, Acheson DW . Patients with haemolytic uraemic syndrome caused by Escherichia coli O157: absence of antibodies to Vero cytotoxin 1 (VT1) or VT2. J Clin Pathol 1993; 46: 1053–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ludwig K et al. Antibody response to Shiga toxins Stx2 and Stx1 in children with enteropathic hemolytic–uremic syndrome. J Clin Microbiol 2001; 39: 2272–2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Levine MM et al. Antibodies to Shiga holotoxin and to two synthetic peptides of the B subunit in sera of patients with Shigella dysenteriae 1 dysentery. J Clin Microbiol 1992; 30: 1636–1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lingwood CA . Role of verotoxin receptors in pathogenesis. Trends Microbiol 1996; 4: 147–153.

    Article  CAS  PubMed  Google Scholar 

  112. Miura Y et al. Peptides binding to a Gb3 mimic selected from a phage library. Biochim Biophys Acta 2004; 1673: 131–138.

    Article  CAS  PubMed  Google Scholar 

  113. Johannes L, Goud B . Facing inward from compartment shores: how many pathways were we looking for? Traffic 2000; 1: 119–123.

    Article  CAS  PubMed  Google Scholar 

  114. Falguières T, Johannes L . Shiga toxin B-subunit binds to the chaperon BiP and the nucleolar protein B23. Biol Cell (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannes, L., Decaudin, D. Protein toxins: intracellular trafficking for targeted therapy. Gene Ther 12, 1360–1368 (2005). https://doi.org/10.1038/sj.gt.3302557

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302557

Keywords

This article is cited by

Search

Quick links