Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy progress and prospects: targeted gene repair

Abstract

The capacity to correct a mutant gene within the context of the chromosome holds great promise as a therapy for inherited disorders but fulfilling this promise has proven to be challenging. However, steady progress is being made and the development of gene repair as a viable and robust approach is underway. Here, we present some of the recent advances that are helping to shape our thinking about the feasibility and the limitations of this technique. For the most part, these advances center on understanding the regulation of the reaction and validating its application in animal models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4: 346–358.

    Article  CAS  PubMed  Google Scholar 

  2. Liu L, Parekh-Olmedo H, Kmiec EB . The development and regulation of gene repair. Nat Rev Genet 2003; 4: 679–689.

    Article  CAS  PubMed  Google Scholar 

  3. Court DL, Sawitzke JA, Thomason LC . Genetic engineering using homologous recombination. Annu Rev Genet 2002; 36: 361–388.

    Article  CAS  PubMed  Google Scholar 

  4. Yu D, Sawitzke JA, Ellis H, Court DL . Recombineering with overlapping single-stranded DNA oligonucleotides: testing a recombination intermediate. Proc Natl Acad Sci USA 2003; 100: 7207–7212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Drury MD, Kmiec EB . DNA pairing is an important step in the process of targeted nucleotide exchange. Nucleic Acids Res 2003; 31: 899–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu L, Cheng S, van Brabant AJ, Kmiec EB . Rad51p and Rad54p, but not Rad52p, elevate gene repair in Saccharomyces cerevisiae directed by modified single-stranded oligonucleotide vectors. Nucleic Acids Res 2002; 30: 2742–2750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Igoucheva O, Alexeev V, Yoon K . Nuclear extracts promote gene correction and strand pairing of oligonucleotides to the homologous plasmid. Antisense Nucleic Acid Drug Dev 2002; 12: 235–246.

    Article  CAS  PubMed  Google Scholar 

  8. Thorpe P, Stevenson BJ, Porteous DJ . Optimising gene repair strategies in cell culture. Gene Therapy 2002; 9: 700–702.

    Article  CAS  PubMed  Google Scholar 

  9. Olsen PA, McKeen C, Krauss S . Branched oligonucleotides induce in vivo gene conversion of a mutated EGFP reporter. Gene Therapy 2003; 10: 1830–1840.

    Article  CAS  PubMed  Google Scholar 

  10. Ferrara L, Parekh-Olmedo H, Kmiec E . Enhanced oligonucleotide-directed gene targeting in mammalian cells following treatment with DNA damaging agents. Exp Cell Res 2004; 300: 170–179.

    Article  CAS  PubMed  Google Scholar 

  11. Ferrara L, Kmiec EB . Camptothecin enhances the frequency of oligonucleotide-directed gene repair in mammalian cells by inducing DNA damage and activating homologous recombination. Nucleic Acids Res 2004; 32: 5239–5248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suzuki T, Murai A, Muramatsu T . Low-dose bleomycin induces targeted gene repair frequency in cultured melan-c cells using chimeric RNA/DNA oligonucleotide transfection. Int J Mol Med 2003; 12: 109–114.

    CAS  PubMed  Google Scholar 

  13. Holmes M et al. Gene correction therapy using designed zinc finger-based endonucleases. Mol Ther 2004; 9: S272.

    Google Scholar 

  14. Miller J et al. Structure-based engineering of the FokI DNA cleavage domain in the context of a chimeric endonuclease: towards maximally efficient ‘Gene Editing’ therapy. Mol Ther 2004; 9: S272.

    Google Scholar 

  15. Carroll D . Using nucleases to stimulate homologous recombination. Methods Mol Biol 2004; 262: 195–207.

    CAS  PubMed  Google Scholar 

  16. Kaminski JM, Huber MR, Summers JB, Ward MB . Design of a nonviral vector for site-selective, efficient integration into the human genome. FASEB J 2002; 16: 1242–1247.

    Article  CAS  PubMed  Google Scholar 

  17. Kolb AF . Genome engineering using site-specific recombinases. Cloning Stem Cells 2002; 4: 65–80.

    Article  CAS  PubMed  Google Scholar 

  18. Olivares EC et al. Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol 2002; 20: 1124–1128.

    Article  CAS  PubMed  Google Scholar 

  19. Akopian A, He J, Boocock MR, Stark WM . Chimeric recombinases with designed DNA sequence recognition. Proc Natl Acad Sci USA 2003; 100: 8688–8691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andersen MS, Sorensen CB, Bolund L, Jensen TG . Mechanisms underlying targeted gene correction using chimeric RNA/DNA and single-stranded DNA oligonucleotides. J Mol Med 2002; 80: 770–781.

    Article  CAS  PubMed  Google Scholar 

  21. Dekker M, Brouwers C, Te RH . Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides. Nucleic Acids Res 2003; 31: E27.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Alexeev V, Igoucheva O, Yoon K . Simultaneous targeted alteration of the tyrosinase and c-kit genes by single-stranded oligonucleotides. Gene Therapy 2002; 9: 1667–1675.

    Article  CAS  PubMed  Google Scholar 

  23. Thorpe PH, Stevenson BJ, Porteous DJ . Functional correction of episomal mutations with short DNA fragments and RNA–DNA oligonucleotides. J Gene Med 2002; 4: 195–204.

    Article  CAS  PubMed  Google Scholar 

  24. Hu Y et al. Reaction parameters of targeted gene repair in mammalian cells. Mol Biotech 2005; 29: 197–210.

    Article  CAS  Google Scholar 

  25. Pierce EA et al. Oligonucleotide-directed single-base DNA alterations in mouse embryonic stem cells. Gene Therapy 2003; 10: 24–33.

    Article  CAS  PubMed  Google Scholar 

  26. Nickerson HD, Colledge WH . A comparison of gene repair strategies in cell culture using a lacZ reporter system. Gene Therapy 2003; 10: 1584–1591.

    Article  CAS  PubMed  Google Scholar 

  27. Kenner O et al. Targeted gene correction of hprt mutations by 45 base single-stranded oligonucleotides. Biochem Biophys Res Commun 2002; 299: 787–792.

    Article  CAS  PubMed  Google Scholar 

  28. Kenner O et al. Concurrent targeted exchange of three bases in mammalian hprt by oligonucleotides. Biochem Biophys Res Commun 2004; 321: 1017–1023.

    Article  CAS  PubMed  Google Scholar 

  29. Gruenert DC et al. Sequence-specific modification of genomic DNA by small DNA fragments. J Clin Invest 2003; 112: 637–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lai LW, Lien YH . Therapeutic application of chimeric RNA/DNA oligonucleotide based gene therapy. Expert Opin Biol Ther 2001; 1: 41–47.

    Article  CAS  PubMed  Google Scholar 

  31. Lu IL et al. Correction/mutation of acid alpha-D-glucosidase gene by modified single-stranded oligonucleotides: in vitro and in vivo studies. Gene Therapy 2003; 10: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  32. Nakamura M et al. Targeted conversion of the transthyretin gene in vitro and in vivo. Gene Therapy 2004; 11: 838–846.

    Article  CAS  PubMed  Google Scholar 

  33. Nickerson HD, Colledge WH . A LacZ-based transgenic mouse for detection of somatic gene repair events in vivo. Gene Therapy 2004; 11: 1351–1357.

    Article  CAS  PubMed  Google Scholar 

  34. Igoucheva O, Alexeev V, Pryce M, Yoon K . Transcription affects formation and processing of intermediates in oligonucleotide-mediated gene alteration. Nucleic Acids Res 2003; 31: 2659–2670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brachman EE, Kmiec EB . DNA replication and transcription direct a DNA strand bias in the process of targeted gene repair in mammalian cells. J Cell Sci 2004; 117: 3867–3874.

    Article  CAS  PubMed  Google Scholar 

  36. Brachman EE, Kmiec E . Gene repair in mammalian cells is stimulated by the elongation of S phase and transient stalling of replication forks. DNA Repair 2005; 4: 445–457.

    Article  CAS  PubMed  Google Scholar 

  37. Igoucheva O, Alexeev V, Yoon K . Oligonucleotide-directed mutagenesis and targeted gene correction: a mechanistic point of view. Curr Mol Med 2004; 4: 445–463.

    Article  CAS  PubMed  Google Scholar 

  38. Brachman EE, Kmiec EB . Targeted gene repair of cyc1 mutations in Saccharomyces cerevisiae directed by modified single-stranded DNA oligonucleotides. Genetics 2003; 163: 527–538.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Radecke F, Radecke S, Schwarz K . Unmodified oligodeoxynucleotides require single-strandedness to induce targeted repair of a chromosomal EGFP gene. J Gene Med 2004; 6: 1257–1271.

    Article  CAS  PubMed  Google Scholar 

  40. Sorensen CB et al. Strand Bias in Gene Repair using Single-Stranded Oligonucleotides, abstract 1153. 6th Annual Meeting of the American Society of Gene Therapy: Washington, DC, 2003.

    Google Scholar 

  41. Parekh-Olmedo H, Engstrom J, Kmiec EB . The effect of hydroxyurea and trichostatin A on targeted nucleotide exchange in yeast and mammalian cells. Ann NY Acad Sci 2003; 1002: 43–56.

    Article  CAS  PubMed  Google Scholar 

  42. Majumdar A et al. Cell cycle modulation of gene targeting by a triple helix-forming oligonucleotide. J Biol Chem 2003; 278: 11072–11077.

    Article  CAS  PubMed  Google Scholar 

  43. Stojic L, Brun R, Jiricny J . Mismatch repair and DNA damage signalling. DNA Repair (Amst) 2004; 3: 1091–1101.

    Article  CAS  Google Scholar 

  44. Brachman EE, Kmiec EB . The ‘biased’ evolution of targeted gene repair. Curr Opin Mol Ther 2002; 4: 171–176.

    CAS  PubMed  Google Scholar 

  45. Li GM . DNA mismatch repair and cancer. Front Biosci 2003; 8: d997–d1017.

    Article  CAS  PubMed  Google Scholar 

  46. Saleh-Gohari N, Helleday T . Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res 2004; 32: 3683–3688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zink D, Mayr C, Janz C, Wiesmuller L . Association of p53 and MSH2 with recombinative repair complexes during S phase. Oncogene 2002; 21: 4788–4800.

    Article  CAS  PubMed  Google Scholar 

  48. Brachman EE, Kmiec EB . DNA replication and transcription direct a DNA strand bias in the process of targeted gene repair in mammalian cells. J Cell Sci 2004; 117: 3867–3874.

    Article  CAS  PubMed  Google Scholar 

  49. Liu H, Agarwal S, Kmiec E, Davis BR . Targeted beta-globin gene conversion in human hematopoietic CD34(+) and Lin(−)CD38(−)cells. Gene Therapy 2002; 9: 118–126.

    Article  CAS  PubMed  Google Scholar 

  50. Osborn AJ, Elledge SJ, Zou L . Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol 2002; 12: 509–516.

    Article  CAS  PubMed  Google Scholar 

  51. Shechter D, Costanzo V, Gautier J . Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair (Amst) 2004; 3: 901–908.

    Article  CAS  Google Scholar 

  52. Olsen PA, Randol M, Krauss S . Implications of cell cycle progression on functional sequence correction by short single-stranded DNA oligonucleotides. Gene Therapy 2005 [E-pub ahead of print 27 January 2005; doi:10.1038/sj.gt.3302454].

    Article  CAS  PubMed  Google Scholar 

  53. Liu L, Usher M, Hu Y, Kmiec EB . Nuclease activity of Saccharomyces cerevisiae Mre11 functions in targeted nucleotide alteration. Appl Environ Microbiol 2003; 69: 6216–6224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bertoni C, Morris GE, Rando TA . Strand bias in oligonucleotide-mediated dystrophin gene editing. Hum Mol Genet 2005; 14: 221–233.

    Article  CAS  PubMed  Google Scholar 

  55. Bertoni C, Lau C, Rando TA . Restoration of dystrophin expression in mdx muscle cells by chimeraplast-mediated exon skipping. Hum Mol Genet 2003; 12: 1087–1099.

    Article  CAS  PubMed  Google Scholar 

  56. Igoucheva O, Yoon K . Gene targeting by oligonucleotides in keratinocytes. Methods Mol Biol 2004; 289: 287–302.

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the community who communicated their unpublished results to us. We thank NIH and Tapestry Pharmaceuticals for continued financial support and we apologize to our colleagues whose work was not cited as primary references due only to space limitations. Hopefully, the cited reviews encompass their outstanding efforts.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parekh-Olmedo, H., Ferrara, L., Brachman, E. et al. Gene therapy progress and prospects: targeted gene repair. Gene Ther 12, 639–646 (2005). https://doi.org/10.1038/sj.gt.3302511

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302511

Keywords

This article is cited by

Search

Quick links