Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Fas-ligand gene silencing in basal cell carcinoma tissue with small interfering RNA

Abstract

Basal cell carcinoma (BCC) is the most frequent cancer in the Caucasian population. Cells of BCC strongly express Fas-ligand (FasL), a member of the tumor necrosis family, which induces apoptosis in Fas receptor-expressing cells. It has been suggested that by expression of FasL, BCC cells may evade the attack of Fas-positive immune effector cells allowing the tumor to expand. Thus, downregulation of FasL should prime BCC to the assault of immune effector cells. Recently, it has been shown that RNA interference is a highly successful approach to specifically silence a gene of interest in single cells and some animal models. However, RNAi in human tissues has not been shown so far. Here, we provide evidence that small interfering RNAs (siRNAs) efficiently transfect tumor tissue ex vivo and silence the gene of interest. We demonstrate that a specific siRNA efficiently downregulates FasL not only in FasL-positive indicator cells but also in surgically excised BCC tissue at both the protein and the mRNA level. The successful transfection of tumor tissues with siRNAs now allows to test the function of the molecule under study and opens up the investigation of other target genes in the tumor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Buechner SA et al. Regression of basal cell carcinoma by intralesional interferon-alpha treatment is mediated by CD95 (Apo-1/Fas)-CD95 ligand-induced suicide. J Clin Invest 1997; 100: 2691–2696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee SH et al. Fas ligand is expressed in normal skin and in some cutaneous malignancies. Br J Dermatol 1998; 139: 186–191.

    Article  CAS  PubMed  Google Scholar 

  3. GutierrezSteil C et al. Sunlight-induced basal cell carcinoma tumor cells and ultraviolet-B-irradiated psoriatic plaques express Fas ligand (CD95L). J Clin Invest 1998; 101: 33–39.

    Article  CAS  Google Scholar 

  4. Jang TJ . Expression of CD40 and Fas ligand in Bowen's disease, squamous cell carcinoma and basal cell carcinoma. Yonsei Med J 2002; 43: 304–308.

    Article  CAS  PubMed  Google Scholar 

  5. Hahne M et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 1996; 274: 1363–1366.

    Article  CAS  PubMed  Google Scholar 

  6. Igney FH, Behrens CK, Krammer PH . Tumor counterattack – concept and reality. Eur J Immunol 2000; 30: 725–731.

    Article  CAS  PubMed  Google Scholar 

  7. Nyhus JK, Wolford C, Feng L, BarberaGuillem E . Direct in vivo transfection of antisense Fas-ligand reduces tumor growth and invasion. Gene Therapy 2001; 8: 209–214.

    Article  CAS  PubMed  Google Scholar 

  8. Ji JM, Wernli M, Buechner S, Erb P . Fas ligand downregulation with antisense oligonucleotides in cells and in cultured tissues of normal skin epidermis and basal cell carcinoma. J Invest Dermatol 2003; 120: 1094–1099.

    Article  CAS  PubMed  Google Scholar 

  9. Elbashir SM et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  10. Elbashir SM, Lendeckel W, Tuschl T . RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001; 15: 188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coburn GA, Cullen BR . Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 2002; 76: 9225–9231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jacque JM, Triques K, Stevenson M . Modulation of HIV-1 replication by RNA interference. Nature 2002; 418: 435–438.

    Article  CAS  PubMed  Google Scholar 

  13. Novina CD et al. siRNA-directed inhibition of HIV-1 infection. Nat Med 2002; 8: 681–686.

    Article  CAS  PubMed  Google Scholar 

  14. Gitlin L, Karelsky S, Andino R . Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 2002; 418: 430–434.

    Article  CAS  PubMed  Google Scholar 

  15. Park WS, Hayafune M, MiyanoKurosaki N, Takaku H . Specific HIV-1 env gene silencing by small interfering RNAs in human peripheral blood mononuclear cells. Gene Therapy 2003; 10: 2046–2050.

    Article  CAS  PubMed  Google Scholar 

  16. Randall G, Grakoui A, Rice CM . Clearance of replicating hepatitis C virus replicon RNAs in cell culture by small interfering RNAs. Proc Nat Acad Sci USA 2003; 100: 235–240.

    Article  CAS  PubMed  Google Scholar 

  17. Hamasaki K et al. Short interfering RNA-directed inhibition of hepatitis B virus replication. FEBS Lett 2003; 543: 51–54.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang M, Milner J . Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 2002; 21: 6041–6048.

    Article  CAS  PubMed  Google Scholar 

  19. Jia QM, Sun R . Inhibition of gammaherpesvirus replication by RNA interference. J Virol 2003; 77: 3301–3306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song EW et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003; 9: 347–351.

    Article  CAS  PubMed  Google Scholar 

  21. Rubinson DA et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406.

    Article  CAS  PubMed  Google Scholar 

  22. Martinez MA et al. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 2002; 16: 2385–2390.

    Article  CAS  PubMed  Google Scholar 

  23. Brummelkamp TR, Bernards R, Agami R . Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002; 2: 243–247.

    Article  CAS  PubMed  Google Scholar 

  24. Scherr M et al. Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 2003; 101: 1566–1569.

    Article  CAS  PubMed  Google Scholar 

  25. Hutvagner G, Simard MJ, Mello CC, Zamore PD . Sequence-specific inhibition of small RNA function. PLoS Biol 2004; 2: 465–475.

    Article  CAS  Google Scholar 

  26. Aoki Y et al. RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol 2003; 30: 96–102.

    Article  CAS  PubMed  Google Scholar 

  27. Dykxhoorn DM, Novina CD, Sharp PA . Killing the messenger: short rnas that silence gene expression. Nat Rev Mol Cell Biol 2003; 4: 457–467.

    Article  CAS  PubMed  Google Scholar 

  28. Pickford AS, Cogoni C . RNA-mediated gene silencing. Cell Mol Life Sci 2003; 60: 871–882.

    Article  CAS  PubMed  Google Scholar 

  29. Agrawal N et al. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 2003; 67: 657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hasuwa H, Kaseda K, Einarsdottir T, Okabe M . Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 2002; 532: 227–230.

    Article  CAS  PubMed  Google Scholar 

  31. McCaffrey AP et al. Gene expression – RNA interference in adult mice. Nature 2002; 418: 38–39.

    Article  CAS  PubMed  Google Scholar 

  32. Sorensen DR, Leirdal M, Sioud M . Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 2003; 327: 761–766.

    Article  CAS  PubMed  Google Scholar 

  33. McCaffrey AP et al. Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 2003; 21: 639–644.

    Article  CAS  PubMed  Google Scholar 

  34. Hull D, Timmons L . Methods for delivery of double-stranded RNA into Caenorhabditis elegans. Methods Mol Biol 2004; 265: 23–58.

    CAS  PubMed  Google Scholar 

  35. Filleur S et al. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res 2003; 63: 3919–3922.

    CAS  PubMed  Google Scholar 

  36. Calegari F et al. Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc Natl Acad Sci USA 2002; 99: 14236–14240. Epub 2002 Oct 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bachmann F et al. Ultraviolet light downregulates CD95 ligand and trail receptor expression facilitating actinic keratosis and squamous cell carcinoma formation. J Invest Dermatol 2001; 117: 59–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank U Guenthert, E Kump, Andrea Glaser and J Samaridis for discussion and critical reading of the manuscript, and M Colombi for technical assistance. This study was supported by Swiss National Science Funds Grant-nr. 3100AO-064233.00.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, J., Wernli, M., Mielgo, A. et al. Fas-ligand gene silencing in basal cell carcinoma tissue with small interfering RNA. Gene Ther 12, 678–684 (2005). https://doi.org/10.1038/sj.gt.3302453

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302453

Keywords

This article is cited by

Search

Quick links