Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Optical imaging of in vivo gene expression: a critical assessment of the methodology and associated technologies

Abstract

Following and quantifying the expression of reporter gene expression in vivo is very important to monitor the expression of therapeutic genes in targeted tissues in disease models and/or to assess the effectiveness of systems of gene therapy delivery. Gene expression of luminescent or fluorescent proteins can be detected directly on living animals by simply observing the associated optical signals by means of a cooled charged-coupled device camera. More accurate resolution can be obtained with more sophisticated technologies. Time-course and quasi-quantitative monitoring of the expression can be obtained on a given animal and followed on a large time window. The present paper describes the physical and technological methodologies and associated problems of in vivo optical imaging. Several examples of in vivo detection of gene delivery are described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Min JJ, Gambhir SS . Gene therapy progress and prospects: noninvasive imaging of gene therapy in living subjects. Gene Therapy 2004; 11: 115ā€“125.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Richard JC et al. Repetitive imaging of reporter gene expression in the lung. Mol Imaging 2003; 2: 342ā€“349.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Miyawaki A, Sawano A, Kogure T . Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol 2003 (Suppl S): 1ā€“7.

  4. Tung CH et al. In vivo imaging of beta-galactosidase activity using far red fluorescent switch. Cancer Res 2004; 64: 1579ā€“1583.

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Mahmood U, Weissleder R . Near-infrared optical imaging of proteases in cancer. Mol Cancer Ther 2003; 2: 489ā€“496.

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. West JL, Halas NJ . Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 2003; 5: 285ā€“292.

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Weissleder R, Ntziachristos V . Shedding light onto live molecular targets. Technol Trends Nat Med 2003; 9: 123ā€“128.

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Zhang J, Campbell RE, Ting AY, Tsien RY . Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 2002; 3: 906ā€“918.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Tsien RY . The green fluorescent protein. Annu Rev Biochem 1998; 67: 509ā€“544.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Baird GS, Zacharias DA, Tsien RY . Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 2000; 97: 11984ā€“11989.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Gurskaya NG et al. GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett 2001; 507: 16ā€“20.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Nickell S et al. Anisotropy of light propagation in human skin. Phys Med Biol 2000; 45: 2873ā€“2886.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Yang M et al. Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumors. Proc Natl Acad Sci USA 2001; 98: 2616ā€“2621.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Natasha S et al. Noninvasive functional optical spectroscopy of human breast tissue. Proc Natl Acad Sci USA 2001; 98: 4420ā€“4425.

    ArticleĀ  Google ScholarĀ 

  15. Dmochowski IJ et al. Quantitative imaging of cis-regulatory reporters in living embryos. Proc Natl Acad Sci USA 2002; 99: 12895ā€“12900.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Brown EB et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 2001; 7: 864ā€“868.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Wack S et al. Feasibility, sensitivity, and reliability of laser-induced fluorescence imaging of green fluorescent protein-expressing tumors in vivo. Mol Ther 2003; 7: 765ā€“773.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Williams RM, Zipfel WR, Webb WW . Multiphoton microscopy in biological research. Curr Opin Chem Biol 2001; 5: 603ā€“608.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Oheim M et al. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Methods 2001; 111: 29ā€“37.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Ntziachristos V, Tung CH, Bremer C, Weissleder R . Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 2002; 8: 757ā€“760.

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Graves EE, Ripoll J, Weissleder R, Ntziachristos V . A submillimeter resolution fluorescence molecular imaging system for small animal imaging. Med Phys 2003; 30: 901ā€“911.

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. McCaffrey A, Kay MA, Contag CH . Advancing molecular therapies through in vivo bioluminescent imaging. Mol Imaging 2003; 2: 75ā€“86.

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Contag CH, Bachmann MH . Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 2002; 4: 235ā€“260.

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Bhaumik S, Gambhir SS . Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci USA 2002; 99: 377ā€“382.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Lipshutz GS et al. In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol Ther 2001; 3: 284ā€“292.

    ArticleĀ  CASĀ  Google ScholarĀ 

  26. Wu JC, Sundaresan G, Iyer M, Gambhir SS . Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 2001; 4: 297ā€“306.

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Honigman A et al. Imaging transgene expression in live animals. Mol Ther 2001; 4: 239ā€“249.

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. De A, Lewis XZ, Gambhir SS . Noninvasive imaging of lentiviral-mediated reporter gene expression in living mice. Mol Ther 2003; 7 (Part 1): 681ā€“691.

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Honigman A et al. Imaging transgene expression in live animals. Mol Ther 2001; 4: 239ā€“249.

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Hoffman RM . Watching real-time metastasis in vivo. Trends Mol Med 2002; 8: 354ā€“355.

    ArticleĀ  Google ScholarĀ 

  31. Pfeifer A et al. Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging. Mol Ther 2001; 3: 319ā€“322.

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Ntziachristos V, Tung CH, Bremer C, Weissleder R . Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 2002; 8: 757ā€“760.

    ArticleĀ  CASĀ  Google ScholarĀ 

  33. Tung CH . In vivo imaging of beta-galactosidase activity using far red fluorescent switch. Cancer Res 2004; 64: 1579ā€“1583.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgements

Support from the CNRS CEA ā€˜Imagerie du petit animalā€™ program, from the ARC (Grand Sud) and from the ā€˜Cliniporatorā€™ EU project should be acknowledged, as well as helpful discussions with Dr Moreau of the CBD CNRS (Toulouse).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golzio, M., Rols, MP., Gabriel, B. et al. Optical imaging of in vivo gene expression: a critical assessment of the methodology and associated technologies. Gene Ther 11 (Suppl 1), S85ā€“S91 (2004). https://doi.org/10.1038/sj.gt.3302374

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302374

Keywords

This article is cited by

Search

Quick links