Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Current approaches and perspectives in human keratinocyte-based gene therapies

Abstract

Inherited and acquired disorders are liable to treatment with somatic gene therapy. The skin, and in particular epidermal cells, are particularly suited to genetic manipulation and follow-up of therapeutic effects. Cutaneous gene therapy may be effective for skin defects and systemic abnormalities. The robust basic and preclinical data available today would support the application of keratinocyte-based gene therapy to patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Spirito F, Meneguzzi G, Danos O, Mezzina M . Cutaneous gene transfer and therapy: the present and the future. J Gene Med 2001; 3: 21–31.

    Article  CAS  Google Scholar 

  2. Gallico III GG et al. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 1984; 311: 448–451.

    Article  Google Scholar 

  3. Pellegrini G, Bondanza S, Guerra L, De Luca M . Cultivation of human keratinocyte stem cells: current and future clinical applications. Cell Eng 1998; 36: 1–13.

    Google Scholar 

  4. Llames SG et al. Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin. Transplantation 2004; 77: 350–355.

    Article  Google Scholar 

  5. Mathor MB et al. Clonal analysis of stably transduced human epidermal stem cells in culture. Proc Natl Acad Sci USA 1996; 93: 10371–10376.

    Article  CAS  Google Scholar 

  6. Del Rio M et al. A preclinical model for the analysis of genetically modified human skin in vivo. Hum Gene Ther 2002; 13: 959–968.

    Article  CAS  Google Scholar 

  7. Fenjves ES, Yao SN, Kurachi K, Taichman LB . Loss of expression of a retrovirus-transduced gene in human keratinocytes. J Invest Dermatol 1996; 106: 576–588.

    Article  CAS  Google Scholar 

  8. Choate KA, Khavari PA . Sustainability of keratinocyte gene transfer and cell survival in vivo. Hum Gene Ther 1997; 8: 895–901.

    Article  CAS  Google Scholar 

  9. Levy L et al. Optimized retroviral infection of human epidermal keratinocytes: long-term expression of transduced integrin gene following grafting on to SCID mice. Gene Therapy 1998; 5: 913–922.

    Article  CAS  Google Scholar 

  10. Ortiz-Urda S et al. Stable nonviral genetic correction of inherited human skin disease. Nat Med 2002; 8: 1166–1170.

    Article  CAS  Google Scholar 

  11. Chen M et al. Restoration of type VII collagen expression and function in dystrophic epidermolysis bullosa. Nat Genet 2002; 32: 670–675.

    Article  CAS  Google Scholar 

  12. Hacein-Bey-Abina S et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  Google Scholar 

  13. Gache YG et al. Construction of skin equivalents for gene therapy of recessive dystrophic epidermolysis bullosa. Hum Gene Ther 2004 (in press).

  14. Woodley DT et al. Normal and gene-corrected dystrophic epidermolysis bullosa fibroblasts alone can produce type VII collagen at the basement membrane zone. J Invest Dermatol 2003; 121: 1021–1028.

    Article  CAS  Google Scholar 

  15. Ortiz-Urda S et al. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J Clin Invest 2003; 111: 251–255.

    Article  CAS  Google Scholar 

  16. Palazzi X et al. Inherited dystrophic epidermolysis bullosa in inbred dogs: a spontaneous animal model for somatic gene therapy. J Invest Dermatol 2000; 115: 135–137.

    Article  CAS  Google Scholar 

  17. Baldeschi C et al. Genetic correction of canine dystrophic epidermolysis bullosa mediated by retroviral vectors. Hum Mol Genet 2003; 12: 1897–1905.

    Article  CAS  Google Scholar 

  18. Morgan JR, Barrandon Y, Green H, Mulligan RC . Expression of an exogenous growth hormone gene by transplantable human epidermal cells. Science 1987; 237: 1476–1479.

    Article  CAS  Google Scholar 

  19. Fenjves ES et al. Systemic distribution of apolipoprotein E secreted by grafts of epidermal keratinocytes: implications for epidermal function and gene therapy. Proc Natl Acad Sci USA 1989; 86: 8803–8807.

    Article  CAS  Google Scholar 

  20. Gordon DA, Fenjves ES, Williams DL, Taichman LB . Synthesis and secretion of apolipoprotein E by cultured human keratinocytes. J Invest Dermatol 1989; 92: 96–99.

    Article  CAS  Google Scholar 

  21. Teumer J, Lindahl A, Green H . Human growth hormone in the blood of athymic mice grafted withcultures of hormone-secreting human keratinocytes. FASEB J 1990; 4: 3245–3250.

    Article  CAS  Google Scholar 

  22. Gerrard AJ, Hudson DL, Brownlee GG, Watt FM . Towards gene therapy for haemophilia B using primary human keratinocytes. Nat Genet 1993; 2: 180–183.

    Article  Google Scholar 

  23. Meng X et al. Keratinocyte gene therapy for systemic diseases. Circulating interleukin 10 released from gene-transferred keratinocytes inhibits contact hypersensitivity at distant areas of the skin. J Clin Invest 1998; 101: 1462–1467.

    Article  CAS  Google Scholar 

  24. Baek SC et al. Sustainable systemic delivery via a single injection of lentivirus into human skin tissue. Hum Gene Ther 2001; 12: 1551–1558.

    Article  CAS  Google Scholar 

  25. Siprashvili Z, Khavari PA . Lentivectors for regulated and reversible cutaneous gene therapy. Mol Ther 2003; 9: 93–100.

    Article  Google Scholar 

  26. Fakharzadeh SS, Zhang Y, Sarkar R, Kazazian HH . Correction of the coagulation defect in hemophilia A mice through factor VIII expression in skin. Blood 2000; 95: 2799–2805.

    CAS  PubMed  Google Scholar 

  27. Larcher F et al. A cutaneous gene therapy approach to human leptin deficiencies: correction of the murine ob/ob phenotype using leptin-targeted keratinocyte grafts. FASEB J 2001; 15: 1529–1538.

    Article  CAS  Google Scholar 

  28. Bellini MH, Peroni CN, Bartolini P . Increases in weight of growth hormone-deficient and immunodeficient (lit/scid) dwarf mice after grafting of hGH-secreting, primary human keratinocytes. FASEB J 2003; 17: 2322–2324.

    Article  CAS  Google Scholar 

  29. Barrandon Y, Li V, Green H . New techniques for the grafting of cultured human epidermal cells onto athymic animals. J Invest Dermatol 1988; 91: 315–318.

    Article  CAS  Google Scholar 

  30. Potten CS, Booth C . Keratinocyte stem cells: a commentary. J Invest Dermatol 2002; 119: 888–899.

    Article  CAS  Google Scholar 

  31. Alonso L, Fuchs E . Stem cells of the skin epithelium. Proc Natl Acad Sci USA 2003; 100: 11830–11835.

    Article  CAS  Google Scholar 

  32. Li A, Pouliot N, Redvers R, Kaur P . Extensive tissue-regenerative capacity of neonatal human keratinocyte stem cells and their progeny. J Clin Invest 2004; 113: 390–400.

    Article  CAS  Google Scholar 

  33. Somani AK, Esmail N, Siminovitch KA . Gene therapy and dermatology: more than just skin deep. J Cutan Med Surg 1999; 5: 249–259.

    Article  Google Scholar 

  34. Margolis DJ, Crombleholme T, Herlyn M . Clinical protocol: phase I trial to evaluate the safety of H5.020CMV.PDGF-B for the treatment of a diabetic insensate foot ulcer. Wound Repair Regen 2000; 8: 480–493.

    Article  CAS  Google Scholar 

  35. Robbins PD, Evans CH . Prospects for treating autoimmune and inflammatory diseases by gene therapy. Gene Therapy 1996; 3: 187–189.

    CAS  Google Scholar 

  36. Marikovsky M et al. Appearance of heparin-binding EGF-like growth factor in wound fluid as a response to injury. Proc Natl Acad Sci USA 1993; 90: 3889–3893.

    Article  CAS  Google Scholar 

  37. Brown LF et al. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. J Exp Med 1992; 176: 1375–1379.

    Article  CAS  Google Scholar 

  38. Eming SA et al. Genetically modified human keratinocytes overexpressing PDGF-A enhance the performance of a composite skin graft. Hum Gene Ther 1998; 9: 529–539.

    Article  CAS  Google Scholar 

  39. Martin P . Wound healing – aiming for perfect skin regeneration. Science 1997; 276: 75–81.

    Article  CAS  Google Scholar 

  40. Echtermeyer F et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 2001; 107: R9–R14.

    Article  CAS  Google Scholar 

  41. Del Rio M et al. Nonviral transfer of genes to pig primary keratinocytes. Induction of angiogenesis by composite grafts of modified keratinocytes overexpressing VEGF driven by a keratin promoter. Gene Therapy 1999; 6: 1734–1741.

    Article  CAS  Google Scholar 

  42. Supp DM, Supp AP, Bell SM, Boyce ST . Enhanced vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor. J Invest Dermatol 2000; 114: 5–13.

    Article  CAS  Google Scholar 

  43. Supp DM, Boyce ST . Overexpression of vascular endothelial growth factor accelerates early vascularization and improves healing of genetically modified cultured skin substitutes. J Burn Care Rehabil 2002; 23: 10–20.

    Article  Google Scholar 

  44. ST Andreadis KE, Hamoen ML, Morgan JR . Keratinocyte growth factor induces hyperproliferation and delays differentiation in a skin equivalent model system. FASEB J 2001; 74: 898–906.

    Article  Google Scholar 

  45. Hamoen KE, Morgan JR . Transient hyperproliferation of a transgenic human epidermis expressing hepatocyte growth factor. Cell Transplant 2002; 11: 385–395.

    Article  Google Scholar 

  46. Romano Di Peppe S et al. Adenovirus-mediated VEGF(165) gene transfer enhances wound healing by promoting angiogenesis in CD1 diabetic mice. Gene Therapy 2002; 9: 1271–1277.

    Article  CAS  Google Scholar 

  47. Serrano F et al. A comparison of targeting performance of oncoretroviral versus lentiviral vectors on human keratinocytes. Hum Gene Ther 2003; 14: 1579–1585.

    Article  CAS  Google Scholar 

  48. Guenechea G, Gan OI, Dorrell C, Dick JE . Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol 2001; 2: 75–82.

    Article  CAS  Google Scholar 

  49. Mazurier F et al. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 2004; 103: 545–552.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Almudena Holguín and Blanca Duarte for excellent technical support, Isabel de Los Santos and Pilar Hernandez, Soledad Moreno for art work and Jesus Martinez for animal care. Our work is supported by DEBRA (UK) Foundation (GM), and the ‘Association Française contre les Myopathies’ (AFM) (GM) and the Programme Hospitalier de Recherche Clinique (GM) SAF- BMC-2001-1018 from Ministerio de Ciencia y Tecnología to JL Jorcano, FIS 01/0556 from Ministerio de Sanidad y Consumo to F Larcher and CAM 08.6/0004 to M Del Rio.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Rio, M., Gache, Y., Jorcano, J. et al. Current approaches and perspectives in human keratinocyte-based gene therapies. Gene Ther 11 (Suppl 1), S57–S63 (2004). https://doi.org/10.1038/sj.gt.3302370

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302370

Keywords

This article is cited by

Search

Quick links