Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene Therapy Progress and Prospects: Episomally maintained self-replicating systems

Abstract

The use of nonviral gene therapy vectors has been hampered by low level of transfection efficiency and lack of sustained gene expression. Episomal self-replicating systems may overcome these hurdles through their large packaging capacity, stability and reduced toxicity. This article reviews three classes of episomal molecules that have been tested with possible therapeutic genes: (1) self-replicating circular vectors, containing the Epstein–Barr virus (EBV) elements oriP and EBNA1; (2) small circular vectors containing scaffold/matrix attachment regions (S/MARs) as cis-acting elements to maintain the episomal status of the vector; (3) chromosomal vectors, based on the functional elements of the natural chromosomes. The studies reported validate the use of episomal vectors to obtain stable and prolonged gene expression, although reveal some limitations that necessitate additional work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4: 346–358.

    Article  CAS  Google Scholar 

  2. Niidome T, Huang L . Gene therapy progress and prospects: nonviral vectors. Gene Therapy 2002; 9: 1647–1652.

    Article  CAS  Google Scholar 

  3. Griesenbach U, Ferrari S, Geddes DM, Alton EWFW . Gene therapy progress and prospects: cystic fibrosis. Gene Therapy 2002; 9: 1344–1350.

    Article  CAS  Google Scholar 

  4. Herweijer H, Wolff JA . Progress and prospects: naked DNA gene transfer and therapy. Gene Therapy 2003; 10: 453–458.

    Article  CAS  Google Scholar 

  5. Montini E et al. In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. Mol Ther 2002; 6: 759–769.

    Article  CAS  Google Scholar 

  6. Mikkelsen JG et al. Helper-independent sleeping beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol Ther 2003; 8: 654–665.

    Article  CAS  Google Scholar 

  7. Ortiz-Urda S et al. PhiC31 integrase-mediated nonviral genetic correction of junctional epidermolysis bullosa. Hum Gene Ther 2003; 14: 923–928.

    Article  CAS  Google Scholar 

  8. Olivares EC et al. Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol 2002; 20: 1124–1128.

    Article  CAS  Google Scholar 

  9. Ortiz-Urda S et al. Stable nonviral genetic correction of inherited human skin disease. Nat Med 2002; 8: 1166–1170.

    Article  CAS  Google Scholar 

  10. Tammur J et al. A bovine papillomavirus-1 based vector restores the function of the low-density lipoprotein receptor in the receptor-deficient CHO-ldlA7 cell line. BMC Mol Biol 2002; 3: 5.

    Article  Google Scholar 

  11. Cui F-D et al. Intravascular naked DNA vaccine encoding glycoprotein B induces protective humoral and cellular immunity against herpes simplex type 1 infection in mice. Gene Therapy 2003; 10: 2059–2066.

    Article  CAS  Google Scholar 

  12. Zhang J et al. Prolonged gene expression in mouse lung endothelial cells following transfection with Epstein–Barr virus-based episomal plasmid. Gene Therapy 2003; 10: 822–826.

    Article  CAS  Google Scholar 

  13. Sclimenti CR et al. Epstein–Barr virus vectors provide prolonged robust factor IX expression in mice. Biotechnol Prog 2003; 19: 144–151.

    Article  CAS  Google Scholar 

  14. Black J, Vos J-M . Establishment of an oriP/EBNA1-based episomal vector transcribing human genomic β-globin in cultured murine fibroblasts. Gene Therapy 2002; 9: 1447–1454.

    Article  CAS  Google Scholar 

  15. Mazda O . Improvement of nonviral gene therapy by Epstein–Barr virus (EBV)-based plasmid vectors. Curr Gene Ther 2002; 2: 379–392.

    Article  CAS  Google Scholar 

  16. Stoll SM, Calos MP . Extrachromosomal plasmid vectors for gene therapy. Curr Opin Mol Ther 2002; 4: 299–305.

    CAS  PubMed  Google Scholar 

  17. Alino SF, Crespo A, Dasi F . Long-term therapeutic levels of human alpha-1 antitrypsin in plasma after hydrodynamic injection of nonviral DNA. Gene Therapy 2003; 10: 1672–1679.

    Article  CAS  Google Scholar 

  18. Paludan C et al. Epstein–Barr nuclear antigen 1-specific CD4+ Th1 cells kill Burkitt's lymphoma cells. J Immunol 2002; 169: 1593–1603.

    Article  CAS  Google Scholar 

  19. Tsimbouri P, Drotar ME, Coy JL, Wilson JB . bcl-x L and RAG genes are induced and the response to IL-2 enhanced in EμEBNA-1 transgenic mouse lymphocytes. Oncogene 2002; 21: 5182–5187.

    Article  CAS  Google Scholar 

  20. Magin-Lachmann C et al. Retrofitting BACs with G418 resistance, luciferase, and oriP and EBNA-1 – new vectors for in vitro and in vivo delivery. BMC Biotechnol 2003; 3: 1–12.

    Article  Google Scholar 

  21. Jenke BH et al. An episomally replicating vector binds to the nuclear matrix protein SAF-A in vivo. EMBO Rep 2002; 3: 349–354.

    Article  CAS  Google Scholar 

  22. Ehrhardt A et al. Optimization of cis-acting elements for gene expression from nonviral vectors in vivo. Hum Gene Ther 2003; 14: 215–225.

    Article  CAS  Google Scholar 

  23. Lipps HJ et al. Chromosome-based vectors for gene therapy. Gene 2003; 304: 23–33.

    Article  CAS  Google Scholar 

  24. Grimes BR, Warburton PF, Farr CJ . Chromosome engineering: prospects for gene therapy. Gene Therapy 2002; 9: 713–718.

    Article  CAS  Google Scholar 

  25. Spence JM et al. Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X alpha-satellite array. EMBO J 2002; 21: 5269–5280.

    Article  CAS  Google Scholar 

  26. Ohzeki J, Nakano M, Okada T, Masumoto H . CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 2002; 159: 765–775.

    Article  CAS  Google Scholar 

  27. Mejia JE et al. Efficiency of de novo centromere formation in human artificial chromosomes. Genomics 2002; 79: 297–304.

    Article  CAS  Google Scholar 

  28. Grimes BR, Rhoades AA, Willard HF . Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation. Mol Ther 2002; 5: 798–805.

    Article  CAS  Google Scholar 

  29. Nakano M, Okamoto Y, Ohzeki J, Masumoto H . Epigenetic assembly of centromeric chromatin at ectopic alpha-satellite sites on human chromosomes. J Cell Sci 2003; 116: 4021–4034.

    Article  CAS  Google Scholar 

  30. Rudd MK, Mays RW, Schwartz S, Willard HF . Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag. Mol Cell Biol 2003; 23: 7689–7697.

    Article  CAS  Google Scholar 

  31. Ikeno M et al. Generation of human artificial chromosomes expressing naturally controlled guanosine triphosphate cyclohydrolase I gene. Genes Cells 2002; 7: 1021–1032.

    Article  CAS  Google Scholar 

  32. Voet T et al. Controlled transgene dosage and PAC-mediated transgenesis in mice using a chromosomal vector. Genomics 2003; 82: 596–605.

    Article  CAS  Google Scholar 

  33. Mee PJ, Shen MH, Smith AG, Brown WR . An unpaired mouse centromere passes consistently through male meiosis and does not significantly compromise spermatogenesis. Chromosoma 2003; 112: 183–198.

    Article  Google Scholar 

  34. Kuroiwa Y et al. Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol 2002; 20: 889–894.

    Article  CAS  Google Scholar 

  35. Auriche C et al. Functional human CFTR produced by a stable minichromosome. EMBO Rep 2002; 3: 862–868.

    Article  CAS  Google Scholar 

  36. Schmidt-Wolf GD, Schmidt-Wolf IGH . Non-viral and hybrid vectors in human gene therapy: an update. Trend Mol Med 2003; 9: 67–72.

    Article  CAS  Google Scholar 

  37. Magin-Lachmann C et al. In vitro and in vivo delivery of intact BAC DNA – comparison of different methods. J Gene Med 2004; 6: 195–209.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conese, M., Auriche, C. & Ascenzioni, F. Gene Therapy Progress and Prospects: Episomally maintained self-replicating systems. Gene Ther 11, 1735–1741 (2004). https://doi.org/10.1038/sj.gt.3302362

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302362

Keywords

This article is cited by

Search

Quick links