Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

An antiaggregation gene therapy strategy for Lewy body disease utilizing β-synuclein lentivirus in a transgenic model

Abstract

Current experimental gene therapy approaches for Parkinson's disease (PD) and dementia with Lewy bodies (DLB) include the use of viral vectors expressing antiapoptosis genes, neurotrophic factors and dopaminergic system enzymes. However, since increasing evidence favors a role for α-synuclein accumulation in the pathogenesis of these disorders, an alternative therapy might require the transfer of genes that might block α-synuclein accumulation. β-Synuclein, the nonamyloidogenic homologue of α-synuclein, has recently been identified as a potential candidate. Thus, in vivo transfer of genes encoding β-synuclein might provide a novel approach to the development of experimental treatments for PD and DLB. To assess this possibility and to better understand the mechanisms involved, a lentiviral vector expressing human (h) β-synuclein (lenti-β-synuclein) was tested in a transgenic (tg) mouse model of hα-synuclein aggregation. This study showed that unilateral intracerebral injection of lenti-β-synuclein reduced the formation of hα-synuclein inclusions and the accumulation of hα-synuclein in synapses and ameliorated the neurodegenerative alterations in the tg mice. Both in vivo and in vitro coimmunoprecipitation and immunoblot experiments show that the mechanisms of β-synuclein neuroprotection involve binding of this molecule to hα-synuclein and Akt, resulting in the decreased aggregation and accumulation of hα-synuclein in the synaptic membrane. Together, these data further support a role for β-synuclein in regulating the conformational state of α-synuclein and suggest that this gene transfer approach might have potential for the development of alternative therapies for PD and DLB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Burton EA, Glorioso JC, Fink DJ . Gene therapy progress and prospects: Parkinson's disease. Gene Therapy 2003; 10: 1721–1727.

    Article  CAS  PubMed  Google Scholar 

  2. Bjorklund A et al. Towards a neuroprotective gene therapy for Parkinson's disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 2000; 886: 82–98.

    Article  CAS  PubMed  Google Scholar 

  3. Trojanowski J, Goedert M, Iwatsubo T, Lee V . Fatal attractions: abnormal protein aggregation and neuron death in Parkinson's disease and Lewy body dementia. Cell Death Differ 1998; 5: 832–837.

    Article  CAS  PubMed  Google Scholar 

  4. Hashimoto M, Masliah E . Alpha-synuclein in Lewy body disease and Alzheimer's disease. Brain Pathol 1999; 9: 707–720.

    Article  CAS  PubMed  Google Scholar 

  5. Koo E, Lansbury PJ, Kelly J . Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci USA 1999; 96: 9989–9990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Conway KA et al. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 2000; 97: 571–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paik S et al. Self-oligomerization of NACP, the precursor protein of the non-amyloid beta/A4 protein (A beta) component of Alzheimer's disease amyloid, observed in the presence of a C-terminal A beta fragment (residues 25–35). FEBS Lett 1998; 421: 73–76.

    Article  CAS  PubMed  Google Scholar 

  8. Hashimoto M et al. Human recombinant NACP/a-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res 1998; 799: 301–306.

    Article  CAS  PubMed  Google Scholar 

  9. Volles MJ et al. Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson's disease. Biochemistry 2001; 40: 7812–7819.

    Article  CAS  PubMed  Google Scholar 

  10. Narayanan V, Scarlata S . Membrane binding and self-association of alpha-synucleins. Biochemistry 2001; 40: 9927–9934.

    Article  CAS  PubMed  Google Scholar 

  11. Conway K, Harper J, Lansbury P . Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 1998; 4: 1318–1320.

    Article  CAS  PubMed  Google Scholar 

  12. Narhi L et al. Both familial Parkinson's disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 1999; 274: 9843–9846.

    Article  CAS  PubMed  Google Scholar 

  13. Osterova-Golts N et al. The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 2000; 20: 6048–6054.

    Article  Google Scholar 

  14. Kanda S et al. Enhanced vulnerability to oxidative stress by alpha-synuclein mutations and C-terminal truncation. Neuroscience 2000; 97: 279–284.

    Article  CAS  PubMed  Google Scholar 

  15. Cohen G . Oxidative stress, mitochondrial respiration, and Parkinson's disease. Ann NY Acad Sci 2000; 899: 112–120.

    Article  CAS  PubMed  Google Scholar 

  16. Masliah E, Hashimoto M . Development of new treatments for Parkinson's disease in transgenic animal models: a role for beta-synuclein. Neurotoxicology 2002; 23: 461–468.

    Article  CAS  PubMed  Google Scholar 

  17. Klucken J et al. Hsp70 reduces alpha-synuclein aggregation and toxicity. J Biol Chem 2004; 279: 25497–25502.

    Article  CAS  PubMed  Google Scholar 

  18. Clayton D, George J . The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. TINS 1998; 21: 249–254.

    CAS  PubMed  Google Scholar 

  19. Maroteaux L, Scheller R . The rat brain synucleins; family of proteins transiently associated with neuronal membrane. Mol Brain Res 1991; 11: 335–343.

    Article  CAS  PubMed  Google Scholar 

  20. Levedan C . The synuclein family. Genome Res 1998; 8: 871–880.

    Article  Google Scholar 

  21. Hashimoto M et al. b-Synuclein inhibits alpha-synuclein aggregation: a possible role as an anti-parkinsonian factor. Neuron 2001; 32: 213–223.

    Article  CAS  PubMed  Google Scholar 

  22. Giasson BI, Murray IV, Trojanowski JQ, Lee VM . A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 2001; 276: 2380–2386.

    Article  CAS  PubMed  Google Scholar 

  23. Rockenstein E et al. Altered expression of the synuclein family mRNA in Lewy body and Alzheimer's disease. Brain Res 2001; 914: 48–56.

    Article  CAS  PubMed  Google Scholar 

  24. Blomer U et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997; 71: 6641–6649.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Englund U et al. The use of a recombinant lentiviral vector for ex vivo gene transfer into the rat CNS. NeuroReport 2000; 11: 3973–3977.

    Article  CAS  PubMed  Google Scholar 

  26. Kafri T, van Praag H, Gage FH, Verma IM . Lentiviral vectors: regulated gene expression. Mol Ther 2000; 1: 516–521.

    Article  CAS  PubMed  Google Scholar 

  27. Masliah E et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 2000; 287: 1265–1269.

    Article  CAS  PubMed  Google Scholar 

  28. Iwai A et al. The precursor protein of non-Ab component of Alzheimer's disease amyloid (NACP) is a presynaptic protein of the central nervous system. Neuron 1994; 14: 467–475.

    Article  Google Scholar 

  29. Souza J, Giasson B, Lee V-Y, Ischiropoulos H . Chaperone-like activity of synucleins. FEBS Lett 2000; 474: 116–119.

    Article  CAS  PubMed  Google Scholar 

  30. Hashimoto M et al. beta-Synuclein regulates Akt activity in neuronal cells: a possible mechanism for neuroprotection in Parkinson's disease. J Biol Chem 2004; 279: 23622–23629.

    Article  CAS  PubMed  Google Scholar 

  31. Park JY, Lansbury Jr PT . Beta-synuclein inhibits formation of alpha-synuclein protofibrils: a possible therapeutic strategy against Parkinson's disease. Biochemistry 2003; 42: 3696–3700.

    Article  CAS  PubMed  Google Scholar 

  32. Uversky VN et al. Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 2002; 277: 11970–11978.

    Article  CAS  PubMed  Google Scholar 

  33. Davidson W, Jonas A, Clayton D, George J . Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 1998; 273: 9443–9449.

    Article  CAS  PubMed  Google Scholar 

  34. Iwata A et al. alpha-Synuclein forms a complex with transcription factor Elk-1. J Neurochem 2001; 77: 239–252.

    Article  CAS  PubMed  Google Scholar 

  35. Lee HJ, Choi C, Lee SJ . Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 2002; 277: 671–678.

    Article  CAS  PubMed  Google Scholar 

  36. Sharon R et al. The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron 2003; 37: 583–595.

    Article  CAS  PubMed  Google Scholar 

  37. Lee HJ et al. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J Biol Chem 2002; 277: 5411–5417.

    Article  CAS  PubMed  Google Scholar 

  38. Perrin RJ, Woods WS, Clayton DF, George JM . Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J Biol Chem 2001; 276: 41958–41962.

    Article  CAS  PubMed  Google Scholar 

  39. Yehuda S, Rabinovitz S, Carasso RL, Mostofsky DI . The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol Aging 2002; 23: 843–853.

    Article  CAS  PubMed  Google Scholar 

  40. Datta SR, Brunet A, Greenberg ME . Cellular survival: a play in three Akts. Genes Dev 1999; 13: 2905–2927.

    Article  CAS  PubMed  Google Scholar 

  41. da Costa CA, Masliah E, Checler F . Beta-synuclein displays an antiapoptotic p53-dependent phenotype and protects neurons from 6-hydroxydopamine-induced caspase 3 activation: cross-talk with alpha-synuclein and implication for Parkinson's disease. J Biol Chem 2003; 278: 37330–37335.

    Article  PubMed  Google Scholar 

  42. Mayo LD, Donner DB . The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 2002; 27: 462–467.

    CAS  PubMed  Google Scholar 

  43. Georgievska B et al. Neuroprotection in the rat Parkinson model by intrastriatal GDNF gene transfer using a lentiviral vector. NeuroReport 2002; 13: 75–82.

    Article  CAS  PubMed  Google Scholar 

  44. Takenouchi T et al. Reduced neuritic outgrowth and cell adhesion in neuronal cells transfected with human a-synuclein. Mol Cell Neurosci 2001; 17: 141–150.

    Article  CAS  PubMed  Google Scholar 

  45. Marr RA et al. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 2003; 23: 1992–1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Masliah E, Rockenstein E . Genetically altered transgenic models of Alzheimer's disease. J Neural Transm Suppl 2000; 59: 175–183.

    CAS  PubMed  Google Scholar 

  47. Masliah E et al. Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 2000; 287: 1265–1269.

    Article  CAS  PubMed  Google Scholar 

  48. Rockenstein E et al. Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 2002; 68: 568–578.

    Article  CAS  PubMed  Google Scholar 

  49. Rockenstein E et al. Levels and alternative splicing of amyloid b protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer's disease. J Biol Chem 1995; 270: 28257–28267.

    Article  CAS  PubMed  Google Scholar 

  50. Mucke L et al. High-level neuronal expression of Abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 2000; 20: 4050–4058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants AG5131, and AG18440 and by a grant from the MJ Fox Foundation for Parkinson's Research to EM and by AG08514 to FHG. RAM was supported in part by funds from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, M., Rockenstein, E., Mante, M. et al. An antiaggregation gene therapy strategy for Lewy body disease utilizing β-synuclein lentivirus in a transgenic model. Gene Ther 11, 1713–1723 (2004). https://doi.org/10.1038/sj.gt.3302349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302349

Keywords

This article is cited by

Search

Quick links