Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Lack of enantioselectivity of herpes virus thymidine kinase allows safer imaging of gene delivery

Abstract

Herpes simplex virus thymidine kinase (HSV-TK) is widely used in gene therapy. The enzymatic activity of HSV-TK may be traced in vivo by specific radiopharmaceuticals in order to image transgene expression. However, most of these radiopharmaceuticals are toxic per se or after activation by HSV-TK, and therefore do not represent ideal molecules for clinical applications and repeated imaging. Unlike human cytosolic TK, HSV-TK is not enantioselective and can efficiently phosphorylate both D and L enantiomers of β-thymidine. Here we show that, after phosphorylation by HSV-TK, tritiated L-β-thymidine (LT) is selectively retained inside the cells in vitro and in vivo. We used the in vivo accumulation of radioactive phosphorylated LT to image the HSV-TK-positive cells inside a transplantable murine brain tumour after inoculation of cells producing retroviruses carrying HSV-TK. Owing to their unnatural enantiomeric conformation, phosphorylated LT metabolites are very poorly processed by mammalian enzymes, thus leading to increased cellular retention and minimal toxicity. The ability to image cells expressing the HSV-TK gene by using radiolabelled LT, without damaging the cells accumulating the phosphorylated L-nucleoside, will be important to monitor the levels and spatial distribution of therapeutic vectors carrying HSV-TK.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bennett JJ et al. Positron emission tomography imaging for herpes virus infection: implications for oncolytic viral treatments of cancer. Nat Med 2001; 7: 859–863.

    Article  CAS  PubMed  Google Scholar 

  2. Jacobs A et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001; 358: 727–729.

    Article  CAS  PubMed  Google Scholar 

  3. Groot-Wassink et al. Adenovirus biodistribution and non-invasive imaging of gene expression in vivo by positron emission tomography using human sodium/iodide symporter as reporter gene. Hum Gene Ther 2002; 13: 1723–1735.

    Article  CAS  PubMed  Google Scholar 

  4. Ram Z et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 1997; 3: 1354–1361.

    Article  CAS  PubMed  Google Scholar 

  5. Klatzmann D et al. A phase I/II dose-escalation study of herpes simplex virus type 1 thymidine kinase ‘suicide’ gene therapy for metastatic melanoma. Study Group on Gene Therapy of Metastatic Melanoma. Hum Gene Ther 1998; 9: 2585–2594.

    CAS  PubMed  Google Scholar 

  6. Markert JM et al. Conditionally replicating herpes simplex virus mutant, G207, for the treatment of malignant glioma: results of a phase I trial. Gene Therapy 2000; 7: 867–874.

    Article  CAS  PubMed  Google Scholar 

  7. Papanastassiou V et al. The potential for efficacy of the modified (ICP 34.5(−)) herpes simplex virus HSV1716 following intratumoral injection into human malignant glioma: a proof of principle study. Gene Therapy 2002; 9: 398–406.

    Article  CAS  PubMed  Google Scholar 

  8. Shand N . A phase 1–2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European–Canadian Study Group. Hum Gene Ther 1999; 10: 2325–2335.

    Article  CAS  PubMed  Google Scholar 

  9. Rainov NG . A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000; 11: 2389–2401.

    Article  CAS  PubMed  Google Scholar 

  10. Saito Y et al. Quantitative autoradiographic mapping of herpes simplex virus encephalitis with a radiolabeled antiviral drug. Science 1982; 217: 1151–1153.

    Article  CAS  PubMed  Google Scholar 

  11. Tjuvajev JG et al. Imaging the expression of transfected genes in vivo. Cancer Res 1995; 55: 6126–6132.

    CAS  PubMed  Google Scholar 

  12. Borrelli E, Heyman R, Hsi M, Evans RM . Targeting of an inducible toxic phenotype in animal cells. Proc Natl Acad Sci USA 1988; 85: 7572–7576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson AA et al. Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase. J Biol Chem 2001; 276: 40847–40857.

    Article  CAS  PubMed  Google Scholar 

  14. Spadari S et al. L-Thymidine is phosphorylated by herpes simplex virus type 1 thymidine kinase and inhibits viral growth. J Med Chem 1992; 35: 4214–4220.

    Article  CAS  PubMed  Google Scholar 

  15. Hernandez-Santiago B et al. Pharmacology of beta-L-thymidine and beta-L-2′-deoxycytidine in HepG2 cells and primary human hepatocytes: relevance to chemotherapeutic efficacy against hepatitis B virus. Antimicrob Agents Chemother 2002; 46: 1728–1733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mossmann T . Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55–63.

    Article  Google Scholar 

  17. Nikkhah G et al. The MTT assay for chemosensitivity testing of human tumors of the central nervous system. Part I: evaluation of test-specific variables. J Neuro-oncol 1992; 13: 1–11.

    Article  CAS  Google Scholar 

  18. Culver KW et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992; 256: 1550–1552.

    Article  CAS  PubMed  Google Scholar 

  19. Mesnil M et al. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci USA 1996; 93: 1831–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krishnan P et al. Phosphorylation of pyrimidine deoxynucleosides analog diphosphates. J Biol Chem 2002; 277: 5453–5459.

    Article  CAS  PubMed  Google Scholar 

  21. Krishnan P, Liu J-Y, Cheng Y-C . Phosphorylation of pyrimidine L-deoxynucleoside analog diphosphates: kinetics of phosphorylation and dephosphorylation of nucleoside analog diphosphates and triphosphates by 3-phosphoglycerate kinase. J Biol Chem 2002; 277: 31593–31600.

    Article  CAS  PubMed  Google Scholar 

  22. Tjuvajev JG et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med 2002; 43: 1072–1083.

    PubMed  Google Scholar 

  23. Kleiner DE et al. Histopathologic changes associated with fialuridine hepatotoxicity. Mod Pathol 1997; 10: 192–199.

    CAS  PubMed  Google Scholar 

  24. Wang J, Eriksson S . Phosphorylation of the anti-hepatitis B nucleoside analog 1-(2′-deoxy-2′-fluoro-1-beta-D-arabinofuranosyl)-5-iodouracil (FIAU) by human cytosolic and mitochondrial thymidine kinase and implications for cytotoxicity. Antimicrob Agents Chemother 1996; 40: 1555–1557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lewis W et al. Fialuridine and its metabolites inhibit DNA polymerase gamma at sites of multiple adjacent analog incorporation, decrease mtDNA abundance, and cause mitochondrial structural defects in cultured hepatoblasts. Proc Natl Acad Sci USA 1996; 93: 3592–3597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verri A et al. Relaxed enantioselectivity of human mitochondrial thymidine kinase and chemotherapeutic uses of L-nucleoside analogues. Biochem J 1997; 328: 317–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Focher F et al. Stereospecificity of human DNA polymerases α, β, γ, δ and ɛ, HIV-reverse transcriptase, HSV-1 DNA polymerase, calf thymus terminal transferase and E. coli DNA polymerase I in recognizing D- and L-thymidine 5′-triphosphate as substrate. Nucleic Acids Res 1995; 23: 2840–2847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Semizarov DG et al. Stereoisomers of deoxynucleoside 5′-triphosphates as substrates for template-dependent and -independent DNA polymerases. J Biol Chem 1997; 272: 9556–9560.

    Article  CAS  PubMed  Google Scholar 

  29. Yamada M et al. Herpes simplex virus vector-mediated expression of Bcl-2 prevents 6-hydroxydopamine-induced degeneration of neurons in the substantia nigra in vivo. Proc Natl Acad Sci USA 1999; 96: 4078–4083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chattopadhyay M et al. In vivo gene therapy for pyridoxine-induced neuropathy by herpes simplex virus-mediated gene transfer of neurotrophin-3. Ann Neurol 2002; 51: 19–27.

    Article  CAS  PubMed  Google Scholar 

  31. Oligino T et al. Intra-articular delivery of a herpes simplex virus IL-1Ra gene vector reduces inflammation in a rabbit model of arthritis. Gene Therapy 1999; 6: 1713–1720.

    Article  CAS  PubMed  Google Scholar 

  32. Moolten FL, Wells JM . Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst 1990; 82: 297–300.

    Article  CAS  PubMed  Google Scholar 

  33. Benedetti S et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 2000; 6: 447–450.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Italian Ministry of Health (Ministero della Salute-P.F. Alzheimer 2000) and C.N.R. (P.S. Basi Biologiche Malattie Neurodegenerative) to LM, and from the Italian Ministry of Health to GF. We would like to thank Professor G Gosselin (University of Montpellier, France) for his kind gift of unlabelled LT. We thank Dr Nathan Lo for revising our English, and I. Marini and P. delli Santi for their invaluable technical support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magrassi, L., Finocchiaro, G., Milanesi, G. et al. Lack of enantioselectivity of herpes virus thymidine kinase allows safer imaging of gene delivery. Gene Ther 10, 2052–2058 (2003). https://doi.org/10.1038/sj.gt.3302112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302112

Keywords

Search

Quick links